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Abstract. We describe a MIX cascade protocol and a reputation system
that together increase the reliability of a network of MIX cascades. In
our protocol, MIX nodes periodically generate a communally random
seed that, along with their reputations, determines cascade configuration.
Nodes send test messages to monitor their cascades. Senders can also
demonstrate message decryptions to convince honest cascade members
that a cascade is misbehaving. By allowing any node to declare the failure
of its own cascade, we eliminate the need for global trusted witnesses.
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1 Introduction

Practical anonymous communication systems require high reliability. Reliability
can lead to efficiency because routes are more likely to succeed. Reliability can
also improve anonymity because senders need to resend fewer messages, and
because a reliable system draws more users and thereby increases anonymity
sets. Past approaches to increasing remailer reliability have included writing
more reliable software [26], building MIX protocols that give provable robustness
guarantees [6, 13, 21], and building a reputation system to let users choose paths
based on the published scores for each node [7].

The reputation system described in [7] uses a MIX-net in which nodes give re-
ceipts for intermediate messages. These receipts, together with a set of witnesses,
allow senders to verify the correctness of each node and prove misbehavior to
the witnesses. Here we investigate and solve two problems from that design:

– The mechanism for verifying a failure claim requires a set of global witnesses,
a threshold of which need to be involved in confirming every failure claim.
These global witnesses create both a trust bottleneck and a communications
bottleneck. Our new reputation system avoids these bottlenecks by making
each node a witness to its own cascade.

– An adversary trying to do traffic analysis can get more traffic by gaining
a high reputation. We protect against such adversaries by choosing from a
pool of “acceptable” MIX nodes, and building cascades so we can bound the
probability that an adversary will control an entire cascade.



2 Overview and Threat Model

We aim to improve the reliability of anonymous communication systems, en-
abling their practical use in fields such as electronic commerce, where trans-
actions need to be efficient, reliable — and, frequently, anonymous. We order
MIX nodes into cascades, where each cascade presents a fixed path through the
network. This approach allows us to decentralize the use of witnesses to detect
failure as introduced in [7], since each node can witness the traffic through its
own cascade. Further, using cascades allows us to better resist traffic analysis
from a pervasive adversary, since sending traffic through fixed paths makes inter-
section attacks more difficult. Our reputation system gives users a more accurate
picture of which nodes are currently up, allowing them to choose routes more
reliably and to know what level of protection they’re getting.

Specifically, we aim to defend against two adversary goals. An anonymity-
breaking adversary tries to discover linkability between sender and receiver; to
identify the sender or receiver of a given message; or to trace a sender forward
(or a receiver backward) to any messages. A reliability-breaking adversary tries
to deny service to users. We assume that our adversary can passively watch all
traffic, and can delay, modify, or insert some messages. We also assume that the
adversary has compromised some fraction of the participating MIXes.

Section 4 shows the protocol by which MIXes build themselves into cascades
in a public and verifiable way, and also describes the process of generating com-
munal randomness so MIXes don’t need to trust a central authority to build the
cascades. We periodically rebuild cascades to reflect changes in reliability.

Inspired by a comment by Jim McCoy about using reputation capital to
regulate participants in DC-nets [20], we use a very simple reputation system.
Any member of a cascade can declare its own cascade to have failed. Nodes
in a successful cascade each gain one reputation point, whereas all nodes in a
failed cascade lose one point. Nodes that misbehave by incorrectly reporting
cascade failure thus damage their own reputations too. We describe this repu-
tation system in Section 5, including some proposals for limiting the fraction
of adversary-controlled nodes, a discussion of some pitfalls introduced by our
simple reputation system, and our technique for building cascades to reduce the
chance that an adversary will control an entire cascade.

Section 6 describes our modified MIX cascade protocol, and also specifies how
MIXes can decide when their cascade has failed. In Section 7, we describe a vari-
ety of attacks on the system and examine how well our design withstands these
attacks. Finally, we close in Section 8 with a discussion of possible directions for
future research.

3 Related Work

3.1 MIX-nets

Chaum introduced the concept of a MIX-net for anonymous communications [5].
A MIX-net consists of a group of servers, called MIXes (or MIX nodes), each of



which is associated with a public key. Each MIX receives encrypted messages,
which are then decrypted, batched, reordered, stripped of the sender’s name and
identifying information, and forwarded on. Chaum also proved security of MIXes
against a passive adversary who can eavesdrop on all communications between
MIXes but is unable to observe the reordering inside each MIX.

One type of MIX hierarchy is a cascade. In a cascade network, users choose
from a set of fixed paths through the MIX-net. Cascades can provide greater
anonymity against a large adversary, because in a free-route system an adversary
who owns many of the MIXes can use intersection attacks to dramatically reduce
the set of possible senders or receivers for a given message [3].

Current research on MIX-nets includes stop-and-go MIX-nets [16], distributed
flash MIXes [13], and hybrid MIXes [23]. MIX cascade research includes real-time
MIXes [15] and web MIXes [2].

3.2 Robustness and Reliability in MIX-nets

Previous work primarily investigates the robustness of MIX-nets in the context
of a distributed MIX system [13]. A MIX is considered robust if it survives the
failure of any k of n participating servers, for some threshold k. This robustness
is all-or-nothing: either k servers are good and the MIX works, or they are not
good and the MIX likely will not work.

Robustness has been achieved primarily via zero-knowledge proofs of correct
computation. Jakobsson showed how to use precomputation to reduce the over-
head of such a MIX network to about 160 modular multiplications per message
per server [13], but the protocol was later found to be flawed [21] by Mitomo
and Kurosawa. Desmedt and Kurosawa’s alternate approach [6] requires many
participating servers. Abe’s MIX [1] provides universal verifiability in which any
observer can determine after the fact whether a MIX cheated, but the protocol
is still computationally expensive. Neff recently made further efficiency improve-
ments to universally verifiable mixing [22].

Reliability differs from robustness in that we do not try to ensure that mes-
sages are delivered even when some nodes fail. Dingledine et al’s reputation
system for free-route MIX-net reliability [7] aims instead to improve a sender’s
long-term odds of choosing a MIX path that avoids failing nodes. This work sim-
ilarly attempts to provide more reliable long-term service by identifying reliable
MIXes and building cascades from them.

We note that reliability and robustness can be composed: a cascade or dis-
tributed MIX with robustness guarantees can be considered as a single node
with its own reputation in a larger MIX-net.

3.3 Approaches to MIX-net Reliability

MIX-net protocols can give specific guarantees of robustness. Under suitably
specified adversary models, these results may be quite strong, e.g. “this dis-
tributed MIX delivers correctly if no more than half of its participating servers
are corrupt.” Such protocols are often complicated and inefficient.



Levien’s statistics pages [19] present another approach. They track both re-
mailer capabilities (such as what kinds of encryption the remailer supports) and
remailer up-times, observed by pinging the machines in question and by send-
ing test messages through each machine or group of machines. Such reputation
systems improve the reliability of MIX-nets by allowing users to avoid choosing
unreliable MIXes.

Instead of engineering the MIX-net protocol directly to provide reliability, we
make use of reputations to track MIX performance. In this approach, we specify
a set of behaviors that characterize a functioning or failed MIX. We are not
likely to prove strong theorems — the goal of reputation is to make the system
“better” without guaranteeing perfection. Like Levien’s reputation system for
free-route MIX networks, our published reputations enable users to find better
routes. Further, our reputation system works behind the scenes to build more
reliable cascades — a process that may even be entirely transparent to the users.

Reliability via protocol is the most well-studied approach, while reliability
via reputations in the form of Levien statistics is the most widely used. Our
work combines the two approaches: we modify the MIX-net protocol to support
easier detection of MIX failures and then specify a suitable reputation system.

4 How to Randomly Self-build Cascades

We periodically rearrange the nodes into cascades, so that cascades reflect recent
changes in reliability, and so nodes in failed cascades can get back in a working
cascade. We choose to rearrange all nodes, not just those from failed cascades;
otherwise reliable nodes will concentrate in stable cascades and unreliable nodes
in unstable ones, making it difficult for new good nodes to gain reputation.

Cascades rebuild with period T (e.g., one day). By T −a−b, each participant
sends a sealed commitment to the Configuration Server (CS). At T−a−b, the CS
publishes the set of commitments. By T−b, participants should reveal to the CS.
At T , the CS publishes the set of reveals, along with the configuration of cascades
for that round. Observers can verify that the CS followed the configuration
scheme and used the contribution from each node.

The CS gives each node N a signed receipt sign(CS, [commitment, timestamp]).
The period from T − a − b to T − b should be long enough that anyone within
reasonable clock skew can verify that the commitment phase has truly closed.
Adequate time must be allowed for nodes to submit their secrets and to make use
of a certified delivery service if their submissions are not accepted and receipts
provided by the CS in a timely manner. The CS also provides a receipt for the
reveal. With both receipts, N can prove that he should be included in the next
cascade configuration.

Commitment from N : sign(N, [N, IP, port, bandwidthpledge, tsbc(randN )]).
Reveal from N : sign(N, [N, IP, port, bandwidthpledge,randN ])
Here “tsbc(randN )” is N ’s temporarily-secret bit-commitment to his ran-

dom value (to be explained below, in Section 4.1). The CS then builds a new



set of cascades for that T , arranged according to an unpredictable value commu-
nally generated by the participating mixes. Thus, no one can control the config-
uration of cascades. Bandwidth might be divided into four categories: 10Kb/s,
100Kb/s, 1Mb/s, 10Mb/s. Participants choose exactly one of these values for
their bandwidth pledge, and each of the four buckets is formed into a set of cas-
cades according to the algorithm described in Section 5, using the unpredictable
communal value.

The communal value can be used as a seed to a PRNG, so the amount of
randomness required from each participant is quite small. If N is worried that
CS will ignore his commitment or reveal (not provide a receipt), he can use
a certified mail delivery system [24, 28] to convince other people that CS is
misbehaving. Alternatively, we can build our own certified delivery system by
pre-assigning a set of witnesses (perhaps fifteen) from the previous T . A threshold
of these witnesses is sufficient to prove misbehavior. As long as the adversary
does not control too high a percentage of nodes then we can trust this system
(cf., Section 5 for discussion of how we limit this).

The set of cascades is determined by the communal value that is publicly
verifiably committed when the CS signs and posts the commitments and their
revealed values. Because a node could still control the resulting communal value
by choosing whether to reveal its value, the commitment is done such that if it is
not revealed, the CS can uncover it after a predictable amount of computation.
Any committed value that is not revealed by T − b should be computed by the
CS to be revealed at T .

4.1 Communal Randomness via Temporarily Secret Commitments

Communal randomness, or more precisely a communally determined unpre-
dictable value, is obtained by collecting random values from participating MIXes.
These are kept secret until everyone has committed so that no one can predict
the result of combining them. The committed values can be uncovered without
help from the committers if necessary so that no one can alter the communal
result in a predictable way by failing to reveal what she committed. On the other
hand, not all the committed random values can be uncovered by an adversary
in time for him to craft a commitment that will yield a predictable result.

Various approaches to this capability have been published. In [11], the com-
mitted unpredictability comes from a long “delaying” calculation on the result
of a (fast) combination of the inputs from participants. Another similar scheme
is given in [27]. Both [4] and [27] give commitment schemes that are individual,
as here; [4] also describes a zero-knowledge proof of a well-formed commitment.
[12] further expands and develops the work in [11] and [27].

We follow the individual commitment approach of [12, 27] because it is both
shortcut computable and easily commitment-verifiable. Anyone possessing a se-
cret (in this case the committer) can compute the committed result quickly. Once
the committed value is revealed, anyone can easily check that this is the commit-
ted value. Commitments take the form tsbc(randN ) = 〈enc(K, randN ), w(K)〉,



the encryption of randN with K followed by a TSBC function used to com-
mit to K. [25] presents a function such that the committer N can quickly and
easily calculate w(K) as well as enc(K, randN ). Once K has been revealed (or
calculated) for each of the entries, all the keys can be published by the CS.
Anyone can quickly verify the communal unpredictable value by performing the
encryptions and computing their amalgamation.

Neither shortcut computability nor easy commitment-verifiability hold for
the collective commitment that first appeared in [11]. The application of com-
mitments to communal unpredictability is not the central focus of [4] and is
only described briefly. It is also only described for two parties producing a ran-
dom bit; thus only one commitment from one party is needed to run the proto-
col. With multiple parties committing to many bits, malleability of the timed-
commitments [9] may become a factor if the revealed values are simply XORed
together to produce the result. The well-formedness proofs may ultimately play
a role in the non-malleability of the commitments since this is similar to how
non-malleability of commitments is proved; we leave this as future work. Instead,
we avoid the issue of malleability by ensuring that the amalgamation of the re-
vealed values is not affected by correlations among those revealed values. For
example, if the revealed values are concatenated in the order the commitments
were posted and then hashed with a well-designed hash function, the result
should be unpredictable if even one of the committed values is unpredictable.

We could make use of the well-formedness proofs in [4] to prevent nodes
from submitting malformed commitments without detection, but the computa-
tional overhead is not necessary. Whether a commitment is malformed can be
confirmed after a predictable amount of computation. Once it is known to be
malformed, the result can either be discarded or it can be used as if it had been
well-formed (details in [12, 27]). Because inputs come from nodes with a vested
interest in maintaining reputation, we can use the reputation system to ensure
that malformed commitments are rare. All nodes must commit to participate
in the network, but to minimize the number of malformed inputs or committed
but not overtly revealed inputs, only commitments from high reputation nodes
will contribute to the communal unpredictable value. We might use inputs from
the top half of the nodes (all bandwidths), to make sure we have enough inputs
to make collusion or compromise of the result unlikely. Any node that commits
but does not reveal or puts in a malformed commitment loses reputation. To
minimize ongoing problems from a misbehaving node, the random input from
that node is not used for a fixed number of subsequent rounds.

If all nodes contributing to the communal value have revealed secret values
that can be verified as committed during the entry phase, these can be combined
by whatever means we use to yield a random result, e.g., concatenation and
hashing as above. If not, we use the delaying calculation to uncover those not
revealed. If all such revealed values correspond to well-formed TSBC entries, the
result still remains easily commitment verifiable. If any of them are malformed,
the communally determined value will only be verifiable by the corresponding



delaying calculation (with parallel or probabilistic speedup, once it has been
done initially, cf. [12, 27] for details).

5 Reputation System and Cascade Configuration

We would like to develop as simple a scoring system as possible — simple sys-
tems are easier to analyze for security, and they allow the users to more easily
understand the implications of a given score. Our system decrements the reputa-
tion of all nodes in a failed cascade, and increments the reputation of all nodes in
a successful cascade. Thus we don’t have to worry about pinpointing the cause
of failure. The hope is that reputations will give a general sense of the reliability
of nodes over the long term.

However, because a node’s behavior affects the reputation of its cascade-
mates, this introduces a new attack on the reputation system. When a cascade
fails that has fewer bad nodes than good nodes, it does more damage to the
overall reputation of good nodes than bad. Since bad nodes can intentionally
fail a cascade, they can exploit this vulnerability to gradually reduce the relative
reputation of the good nodes.1 The bad nodes “creep upward” on the reputation
spectrum, eroding the reputation of nodes above them — our visual simulations
led us to refer to this attack as the creeping death.

Because the bad nodes can gain reputation faster, they can eventually get
to any point on the reputation scale. Rather than complicating the reputation
system to prevent our adversary from performing the creeping death attack, we
intentionally keep it simple and develop an algorithm for building cascades that
minimizes impact from this attack.

Since bad nodes can position themselves anywhere (reputation-wise) to in-
crease the chance of winning a whole cascade, the optimal strategy to protect
anonymity chooses nodes for each cascade entirely at random. But we also want
to increase the cost of reliability breaking, so that the adversary can only affect
cascades likely to be highly desired for use if he runs reliable nodes himself;
simply getting nodes into the system should have less impact. We thus combine
these approaches and begin choosing cascade nodes randomly (using the random
seed from the method of Section 4) from an adequately large set of nodes, but
still of the highest possible reputation. (See Section 5.1 for details.)

While the reputation system reduces the impact of an adversary that merely
gets nodes accepted into the system, the creeping death attack allows a resource-
ful adversary to quickly move up on the reputation spectrum. An adversary with
many nodes can still succeed at breaking reliability and anonymity. We prevent
our adversary from creating a multitude of identities and flooding the system
with them (an attack known as pseudospoofing) with an identity-based barrier
to entry: a web of trust like Advogato [17]. A web of trust allows us to limit
the number of nodes an adversary can get certified. [17] gives a proof that the
1 ‘Good’ and ‘bad’ refer to nodes that are honest or that are part of the adversary,

respectively. Because a bad node may be reliable to break anonymity or reliability,
they do not necessarily correspond to ‘reliable’ and ‘unreliable’.



number of bad nodes accepted by the web is limited by the number of honest
members that might assign trust to the adversary (confused nodes) — not the
number of nodes the adversary creates. If we pick the seeds of the web carefully
and make some assumptions about the number and position of confused nodes,
we can bound the fraction of bad nodes in the system.

Alice should certify Bob based on whether she believes him to be trustwor-
thy (to be a real person with good intentions). If she certifies based on expected
performance, the adversary can simply run convincingly reliable nodes. Certifi-
cation aims only to bound the total percentage of adversary-owned nodes in the
system.

On the other hand, we might ask Alice to not certify Bob if she believes he
might be unreliable. However, this imposes a greater burden on Alice, and also
doesn’t account for the fact that Bob’s behavior can change over time (whereas
certification is a one-time event). Instead, the reliability of an admitted node
will be determined by the reputation system. Nodes that are the most reliable
over time will have the highest reputations.

5.1 Building Cascades

It is tempting to believe that some alternative reputation system or cascade
algorithm can reduce or simplify the problem introduced by creeping death. For
instance, we might punish nodes incrementally more as they have more failures
on record. But this is exactly the problem — honest nodes do fail more often than
adversary nodes. For any pattern that we look for, our adversary can arrange it
so honest nodes fit that pattern better or more often than bad nodes.

Consider cascades with only two nodes. In cascades with one good and one
bad, the bad node can hurt only one good node, so by construction bad nodes
do equal damage to good nodes. But even this system falls prey to the creeping
death. Since a cascade can only fail if one of its nodes writes the “We failed”
certificate, the both-bad case will never fail (the nodes simply never write the
certificate), whereas a both-good case will sometimes legitimately fail. Thus ev-
ery both-bad cascade can stop functioning immediately, yet the bad reputations
increase faster than the good reputations over time.

While we cannot easily reduce or prevent creeping death, we can choose cas-
cades to produce acceptable and predictable risk and reliability despite creep-
ing death. Reasonable anonymity protection may require chaining cascades into
longer paths.

We order the nodes by reputation, and choose nodes for the first cascade
randomly from within a pool of nodes at the top of the reputation spectrum.
(Randomness is obtained from the seed chosen in the method of Section 4.1.)
Next, add to the pool enough next-highest reputation nodes to maintain its size
and pick another cascade at random. This continues until the last cascade for
which an adequate pool size can be maintained. At that point, the remaining
nodes are formed into cascades at random.

How do we decide this pool size? Assume the following notation:



– p = fraction of nodes that are bad,
– s = scare factor: acceptable probability of adversary-controlled path,
– r = range: size of the pool from which nodes are chosen for a single cascade,
– l = length of a single cascade,
– c = chain length: number of cascades chained together,

For determining the range, we assume a worst case for adversary distribution,
because of creeping death. That is, we always assume the adversary resides
entirely in the pool of nodes from which we’re picking a cascade. This means

(p

r

)lc

= s and so r =
p

s
1
lc

For example, suppose that cascades are of length 4, there are not more than
20% bad nodes altogether, and it is acceptable that one of every hundred thou-
sand paths (cascade chains) is completely bad — meaning messages through it
are compromised. Also assume that we chain three cascades to reduce the odds
that all nodes traversed are bad.2 Then

r =
.2

(10−5)
1
12

= 0.522

Thus the first cascade must come from nodes in the top 52.2% of the repu-
tation spectrum. The next cascade must be chosen from the same pool, minus
the four nodes of the first cascade and plus the four next highest reputation
nodes. Once the lowest reputation node has been added to the choice pool, the
remaining nodes are just chosen at random until all the cascades are formed.

A chained cascade path is the same as a single long cascade of length lc with
respect to the odds that all nodes in it are bad, but they are not the same in
general. When a chained cascade fails, only the offending subcascade is removed
from the system for that period and its nodes decremented in reputation. Also,
users may choose to chain cascades or not, may not always choose to chain in
the same way, or may choose a longer or shorter chain. A user may choose not to
chain because of the computational overhead, the latency, etc. This choice will
afford him improvements in those areas, but at an increased risk to anonymity.
Users should be made aware of the risks. Our system allows an easy explicit
presentation of the relative risks and tradeoffs. It also allows us to adjust these
at the system level. For example, if we wish to reduce r, we can weaken s, or
adjust l or the recommended c. Of course if p is high enough, s strong enough,
and we limit lc to some practical bound, r may exceed 1 and no network is
feasible. Or r may be close enough to 1 to render the reputation system largely
moot — but at least we can calculate this and react accordingly.

2 A path length of 12 would be absurd with current remailers; but the whole point of
this design is to improve reliability so long paths are feasible.



6 The Cascade Protocol, or, When to Fail Your Cascade

Opportunies for misbehavior in cascades fall into three classes:

1. Entry point: Incoming messages might not be accepted.
2. Inside the cascade: Messages might be replaced with dummy messages.
3. Exit point: Messages might not be delivered.

Each MIX can test its cascade by sending and receiving messages using
ordinary-looking external addresses — but spoofing or maintaining plausible
external addresses is hard. Instead, we protect against this “selectively process
the test messages” attack by relaying traffic through other nodes in the cascade
and allowing them to undetectably insert test messages. All l nodes in the cas-
cade (typically l might be 4 or 5) accept 1

l of the total traffic, and deliver the
messages to the head of the cascade. The head publishes a snapshot of the batch
(a set of hashes of each message) as he processes it.

A sender Alice can ask for the snapshot to verify that her message got into
the batch. If not, she concludes that either the head or the node she used was
dishonest, and goes to a different node or cascade. As an optimization, nodes
that accept messages can give Alice a receipt if they accept her message. If her
message does not make it into the batch, Alice can broadcast the message and
the receipt to the other nodes in the cascade; an honest cascade member will
determine that the receipt should have been honored and fail the cascade.

Because all the messages to the head come from other nodes in the cascade,
these nodes can insert indistinguishable test messages into the batches. If a
test message does not make it to the tail, its sender fails the cascade. Since
other nodes can’t tell which messages are test messages, dishonest nodes risk
being caught if they replace even one message with a dummy message. Thus our
protocol detects misbehavior at the entry point (Goal 1).

In the naive delivery design, the tail delivers messages and also broadcasts
them to the other nodes in the cascade. Every node attempts delivery. Since
the tail can’t tell who wrote a test message, he must deliver every message
to every node in the cascade or risk failing the cascade. To prevent the tail
from selectively dropping messages based on destination, nodes address some
of their test messages to previous recipients. Thus, the tail must deliver even
to a user not known to be running a node. (This reliability increase must be
balanced with possible spam abuse.) A more efficient design assumes a PKI
which includes all recipients. In this case, we shortcut the need for broadcasting
when the original delivery attempt produces a signed receipt; we discuss this
more in Section 6.1. By delivering outgoing traffic to all cascade members, our
protocol detects misbehavior at the exit point (Goal 3).

A dishonest head can publish a correct batch snapshot but replace its (or a
conspirator’s) portion of messages with dummy messages. Because it knows its
portion contains no test messages, all of those messages will be undetectably lost.
We solve this by supporting external test messages as well. Alice might become
suspicious because the cascade accepts messages but doesn’t deliver them; she



can send a test message, wait a while, and then reveal to everybody how the
message should have decrypted. If at least one node in the cascade is honest, he
will agree that he didn’t see the message and fail the cascade. Thus we detect
misbehavior after the batch snapshot is published. (Goal 2).

Senders may want to chain cascades for stronger anonymity. To make chain-
ing cascades more robust, nodes consider delivery to a second cascade as a special
case. We can specify the entire cascade rather than a single node as the next
hop in the chain. Each node from the first cascade chooses a random node in
the second cascade and attempts delivery. Nodes may verify that their message
is included in the next cascade’s batch, and claim misbehavior if not. With this
modification, the head of a cascade must be able to detect duplicates in the
batch; however, since all nodes must already detect duplicates to foil replays,
this presents no extra burden.

Since senders exposing a faulty cascade have no reason to chain their test
messages through another cascade, some nodes need to explicitly send external
test messages to other cascades and verify their delivery.

Test messages using real addresses help foil time-based intersection attacks.
In a standard MIX network, an adversary with information about what users are
active at what times can quickly narrow down the set of suspects based on when
traffic is seen. An active adversary works even faster by knocking out suspects
until traffic stops. Because cascade nodes send messages too, an address might
get mail at other times as well.

Users worried about profiling should send each message through a different
cascade, so an adversary who owns a few cascades cannot read all messages.
Users worried about message linkability should send all messages through one
cascade: a single compromised cascade can reveal linkability.

A decentralized algorithm would allow users to keep a similar anonymity set
across cascade reconfigurations, further blocking time-based intersection attacks.
On the other hand, an adversary targetting a specific user benefits from this
predictable behavior. We leave this as future work.

Plaintext messages are distinguishable and so are less reliable. Further, since
test messages with convincing plaintext are hard to write, nodes are unlikely to
address tests to a recipient without a known public key. Optionally, outside users
could contribute convincing plaintext messages to be used as test messages by a
node; that way it could send a plaintext test message to the recipient and verify
its delivery.

6.1 Delivery Receipts

Message recipients can give the tail a receipt when he delivers a message. The
tail first attempts to get a receipt, which he can use to prove that he delivered
the message. If he does not get a receipt (e.g., because the destination address
refuses to provide a receipt or does not exist), he broadcasts the message to the
other members of the cascade, who try to deliver. In any case they now know
that he followed the protocol.



An unhappy sender Alice can contact some cascade node N and claim “T
didn’t deliver my message”, along with a demonstration of the remaining de-
cryptions between N and T . If N remembers what he passed to N + 1, Alice
can show N what it should have looked like when it got to T .

If N has already heard from T about its attempt to deliver the message, he
knows T is blameless. If not, he can query T for a receipt — if T has no receipt,
the cascade failed (either the message never got to T , or he did not deliver it).

Delivery receipts detect misbehavior as long as one of the nodes in the cascade
is honest. If the honest node is the tail T and the message makes it that far,
then the message will be delivered (cases 1 and 2 handle if the message doesn’t
make it that far). If T is bad, either he delivers the message to an honest N and
it gets delivered, or he does not and Alice can convince N that the cascade is
misbehaving.

If a recipient is not configured to return a receipt, the delivery still gets
through — in this case, the message gets broadcast to the other cascade mem-
bers, and each of them attempts delivery. In a sense, the use of receipts is just
a bandwidth optimization.

Most related work assumes public keys for recipients are known to all parties.
Without this PKI, the exit node can forge a signed receipt from the recipient.
But since we don’t need to link keys to external identities, a sender Alice can
include Bob’s signature verification key in her message, allowing any cascade
node to verify Bob’s receipt in a decentralized fashion.

6.2 Capacity-attacking Adversary

Since nodes can refuse incoming messages by falsely claiming to be full, the
number of messages processed by a cascade is at least proportional to the number
of honest nodes in that cascade. By inserting indistinguishable test messages into
its own batches, each node verifies that the rest of the cascade is successfully
decrypting and passing on that fraction of its bandwidth promise, as well as
guaranteeing that the batch provides a minimum level of anonymity. Nodes
should pad if they don’t have a full batch fraction; by failing the cascade if the
amount of traffic coming in from the previous hop is outside suitable thresholds,
each node verifies that the rest of the cascade is spending (even if wasting) its
entire bandwidth promise.

By not accepting any messages and then not delivering the corresponding
dummy traffic, bad nodes can spend slightly less bandwidth than good nodes.
But if those bad nodes are delivering messages for the honest cascade members,
they are doing no more damage than if they simply had not signed up that
period. Thus our design frustrates a capacity-breaking adversary (a special case
of the reliability-breaking adversary).

6.3 Resource Management and Reputation Servers

Because the highest-reputation cascade cannot process all of the traffic, cascades
publish available capacity information, including the expected wait or available



quality of service for messages. Users compare reputation and available QoS from
each cascade, thus balancing load across the cascades.

A group of redundant reputation servers (RS) serve current node state. Nodes
give each RS hourly heartbeat updates, and deliver failure messages immediately.
Because each node signs and timestamps each certificate, an RS can at most fail
to provide the newest certificate. Each RS works with the others to ensure correct
data, perhaps by successively signing certificate bundles. Senders download the
entire bundle of certificates if it is small enough, else they must query through the
MIX-net or query via Private Information Retrieval [18] to privately download
a random subset. Otherwise, the adversary could use that information to aid
intersection attacks.

Actual deployment is still a complex problem; we leave this as future work.

7 Attacks and Defenses

Attacks on Anonymity

Have enough nodes to own an entire cascade. By using a web of trust, building
cascades from a large enough pool of reliable nodes, and suggesting a safe
minimum chain length, we control the chance that this attack will succeed.

Gain high reputation to read more traffic. Similarly, our cascade building algo-
rithm blocks this attack.

Replay attack, message delaying, etc. We rely on the standard defenses offered
by MIX-net protocols.

Trickle attack. If one node in the cascade is honest, at least 1
l of the traffic will

be legitimate in every batch.
Intersection attack. Using MIX cascades rather than free routes helps to defend

against intersection attacks from very large adversaries [3]. By encouraging
users to pad with dummy messages when not sending traffic, and to continue
using similar anonymity sets across cascade configurations, we can further
complicate intersection attacks. However, a complete solution to the inter-
section attack remains an open problem.

Influence cascade configuration externally. Our algorithm for generating com-
munally random uncertainty resists individuals and groups, as detailed in
Section 4.

Compromise the cascade configuration server. Because the output of the CS is
publicly verifiable, incorrect behavior can be detected.

Knock down uncompromised cascades to get more traffic. While the adversary
can knock down other cascades, the low chance of owning an entire path
limits the success of this attack.

Attacks on Capacity and Reliability

Flood nodes with messages. If this becomes a problem, we can integrate a ticket
service such as that in [2], limiting the number of messages a given identity
can generate for each batch. Other solutions include proofs of work and other
micropayment schemes [8, 10, 14].



Knock down many cascades. We assume that our adversary is not strong enough
to knock down all or most of the cascades in the system. If he only knocks
down some, service continues as normal.

Block commitments to the Configuration Server. If the adversary launches a
denial of service attack against the CS, the participants can together use a
decentralized algorithm to simulate the CS (all of its operations are public
and verifiable).

Flood the CS with commits. We only consider commits from nodes which have
been certified in the web of trust, and we only need to actually use those
commitments from relatively high-reputation nodes.

Refuse commitments at the Configuration Server. Because we allow certified
delivery to the CS, refusing commitments can be detected by any observer.

Refuse incoming messages as a cascade member. This attack can work to reduce
capacity; but the node is still spending most of its pledged bandwidth on
correctly processing messages from other nodes, as well as generating dummy
traffic in place of the refused traffic. This attack is very inefficient.

Selectively process only test messages. Our protocol addresses this possibility
in Section 6.

Attacks on Reputations

Beat the web of trust. The security of the web of trust is perhaps the most criti-
cal assumption of our system. If an adversary can get a lot of nodes certified
without spending effort for each one, he can start widespread attacks on
anonymity, reliability, capacity, and reputations. On the other hand, getting
just a few extra nodes certified does not buy him much.

Internal selective DoS — creeping death. The adversary can use the creeping
death attack (fail the cascade if good nodes lose more reputation than bad
nodes) to gain any position in the reputation spectrum. Our cascade building
algorithm makes this technique ineffective at breaking anonymity; further,
it may prove very expensive in terms of resources to move a large number of
nodes to the top of the reputation spectrum.

External selective DoS — knock down the high-reputation cascades. Our “all
for one and one for all” approach to reputation makes selective denial of
service even easier than in [7]. Previously, to knock down a reliable node you
needed to successfully flood it or cause it to not process messages correctly.
Now you simply have to locate and knock down the weakest member of
its cascade. However, this vulnerability is acceptable: removing one cascade
does not deny service to the system as a whole, and as above it does not get
you much closer to breaking anonymity.

8 Future Directions

We have described a protocol for improving reliability of anonymous communi-
cation networks, based on a MIX cascade design and a simple reputation system.
There are a number of directions for future research:



– Better approaches to generating convincing destinations for dummy traffic,
or reducing the bandwidth overhead of the current approaches, would make
the overall design more reasonable.

– Improved cascade configuration algorithms would allow us to provide stronger
anonymity and reliability.

– More research on the scope and characteristics of the creeping death attack
might give insight on how to defeat it.

– More analysis on the attack-resistance of our reputation system might yield
stronger proofs or a better design. For instance, can we guarantee bounds
on work performed by the adversary under various models?

– Adapting this design to free-route MIX networks would allow it to be tested
with a wider deployment in the current remailer system.
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