
Synchronous Batching:
From Cascades to Free Routes

Roger Dingledine1, Vitaly Shmatikov2, and Paul Syverson3

1 The Free Haven Project (arma@freehaven.net)
2 SRI International (shmat@csl.sri.com)

3 Naval Research Lab (syverson@itd.nrl.navy.mil)

Abstract. The variety of possible anonymity network topologies has
spurred much debate in recent years. In a synchronous batching design,
each batch of messages enters the mix network together, and the mes-
sages proceed in lockstep through the network. We show that a syn-
chronous batching strategy can be used in various topologies, including
a free-route network, in which senders choose paths freely, and a cascade
network, in which senders choose from a set of fixed paths. We show
that free-route topologies can provide better anonymity as well as better
message reliability in the event of partial network failure.

1 Introduction

Modern deployed mix networks, including Mixmaster [21] and its successor
Mixminion [8], are subject to partitioning attacks: a passive adversary can ob-
serve the network until a target message happens to stand out from the others [3],
and an active adversary can manipulate the network to separate one message
from the others via blending attacks [24]. Berthold et al. argue [3] that parti-
tioning opportunities arise because the networks use a free-route topology—one
where the sender can choose the mixes that make up her message’s path. They
suggest instead a cascade network topology, where all senders choose from a set
of fixed paths through the mix network.

In this paper we argue that the cascade design resolves these attacks be-
cause it uses a synchronous batching strategy, not because it uses a particular
network topology. We show that synchronous batching prevents these attacks
even when free routes are used. Further, we explore three topologies with syn-
chronous batching—cascades, stratified (a restricted-route hybrid topology), and
free-route—and find that the free-route network provides the highest expected
anonymity as well as the best robustness to node failure.

In Section 2 we describe the synchronous batching model. Section 3 relates
previous work to synchronous batching, including a response to each of the argu-
ments from [3]. Section 4 presents the three topologies, and Section 5 describes
their entropy (average anonymity the sender expects from the network). We use
a model checker to compute entropy for networks with 16 nodes: we present our
results and assess the assumptions behind them in Section 6. Section 7 considers
other metrics such as bandwidth requirements, latency, and robustness.



2 Synchronous batching

Chaum proposed hiding the correspondence between sender and recipient by
wrapping messages in layers of public-key cryptography, and relaying them
through a path composed of mixes [4]. Each mix in turn decrypts, delays, and
re-orders messages, before relaying them toward their destinations.

A mixnet design groups messages into batches and chooses paths; its design
choices affect the degree of anonymity it can provide [24]. We might define ideal
anonymity for a mixnet to be when an attacker can gain no information (be-
yond prior knowledge) about the linkage between messages entering and leaving
the network, other than that the maximum time between them is equal to the
maximum network latency.

This ideal is not achieved by protocols like Mixminion that use locally com-
puted random delays: if the maximum latency of such a network is t, the prob-
ability that an output message corresponds to a particular input message might
be considerably higher than for other messages that have entered over that time.
(In principle, because of its pool mode, a message’s maximum latency could be
infinite, but that’s not a significant improvement in practice: if the probability
of a given latency t drops off exponentially with t, then so does the probability
that a message leaving the network could have been sent that long ago [23].)
Also, because Mixminion is both asynchronous (messages can enter and leave
the network at any time) and uses free routes, it is subject to the attacks from [3]
described in Section 3.2 below.

A network that uses synchronous batching has a fixed batch period, tbatch,
which is related to the maximum desired latency, for example 3 hours. Messages
entering the network in each batch period are queued until the beginning of the
next period. They are then sent through the mixnet synchronously, at a rate of
one hop per hop period. All paths are a fixed length ` hops, so that if no messages
are dropped, the messages introduced in a given batch will progress through their
routes in lockstep, and will all be transmitted to their final destinations ` hop
periods later. Each layer of a message, once decrypted, specifies the hop period
in which it must be received, so that it cannot be delayed by an attacker.

The width w of a mixnet using synchronous batching is the number of nodes
that simultaneously process messages from a given batch in each hop period.
(If this is not constant, we can still talk about the maximum, minimum, and
mean width.) When w = 1, we have a cascade. The latency is between `thop

and tbatch + `thop, depending on when the message is submitted. We might set
thop < tbatch/`, so the latency is at most 2tbatch, independent of the path length.
Thus the entire batch is processed and delivered before the next batch enters the
network. Under this constraint, we can give nodes the maximum opportunity to
make use of the available bandwidth, and the best chance at delivery robustness,
by setting thop ' tbatch/`.



3 Related work

3.1 Synchronous batching timing model and protocol

Dingledine et al. present in [11] a mix network that uses synchronous batching.
We refer to that paper for a detailed discussion of the timing model, how to
handle loosely synchronized clocks, and the step-by-step instructions for senders
and mixes to use the network and judge whether messages have arrived on time.

That paper also describes a receipt and witness system by which senders and
mixes can prove that a given mix failed to pass on or accept a given message.
These receipts allow a reputation system: senders can recognize which nodes
tend to drop messages, and avoid them in the future.

3.2 The Disadvantages of Free Mix Routes

Berthold et al. argue [3] that cascades are safer than free-route mix networks
against a strong adversary who watches all links and controls many of the mixes.
We consider each of their attacks below and find in each case that the arguments
of [3] do not apply if the free-route network is synchronous. Indeed, against some
of the attacks a free-route network is much stronger than the cascade network.

Position in mix route: This attack partitions messages that go through a
given honest node based on how many hops each message has travelled so far. If
the adversary owns all other nodes in the network, he can distinguish messages
at different positions in their path (say, one has traversed two mixes already,
and another has traversed three), and thus learn the sender and recipient of
each message. The authors note: Eventually, a message is only unobservable in
that group of messages which have this mix on the same routing position. But in
the synchronous design, that’s not a problem because this group is large (if only
one mix is trustworthy, 1/w of all messages in the batch). They conclude: If only
one mix of a route is trustworthy, then the achievable anonymity is distinctly
lower in a mix network compared to a synchronously working mix cascade. The
actual conclusion should be: If only one mix of a route is trustworthy, then the
achievable anonymity for a given topology is distinctly lower in an asynchronous
mixnet than in a synchronous mixnet.

Determining the next mix: An adversary owning most nodes in the net-
work can attack the honest mixes: he can link senders to messages entering
honest mixes, and he can link receivers to messages exiting honest mixes. Thus
the target messages will only be mixing with other messages that enter the mix
node at that time, and not with other messages elsewhere in the network. Even
if senders use the same path for multiple messages, the authors point out that
the batches always generate different anonymity groups. Again, the important
property is whether the network uses synchronous batching, not whether it uses
free routes. In a synchronous batching design, all messages in a batch exit the
network together after the last hop, so messages cannot be partitioned based on
when they enter or exit the network.



Probability of Unobservability: The authors explain that the cascade
topology optimizes for the case that only one mix node is honest. They compare a
4-node cascade (with 3 compromised nodes) to a 20-node free-route mix network
(with 75% compromised nodes), and find that whereas the cascade provides
complete protection, a user choosing four nodes in the free-route network has a
non-trivial chance of picking an entirely compromised path. But this is a false
comparison. A better comparison would consider either a free-route mix network
with 4 nodes, or a network of five ` = 4 cascades—so the cascade network also
has a chance of fully-compromised paths. In Section 6 we show that while each
cascade in a cascade network of width w only mixes 1/w of the messages from
the batch, a free-route network can mix all the messages from the batch and thus
achieves significantly stronger anonymity even with 75% compromised nodes.

Active Attacks: The authors discuss an active attack called a trickle at-
tack [17], wherein the adversary prevents legitimate messages from entering the
batch, or removes some messages from the batch, so he can more easily trace
Alice’s message. To make the attack less overt, he can send his own messages into
the batch, or replace the messages already in the batch with his own messages.
These attacks where the adversary blends his messages with Alice’s message
threaten both synchronous-batching and asynchronous-batching networks in all
topologies, and a complete solution that is practical is not known [24]. The
authors of [3] present some approaches to mitigating this attack in a cascade
environment, but a variety of other approaches have been developed that also
work in a free-route environment. We discuss them next. Other active attacks
are described in Section 7.3.

3.3 Blending attacks

Active attacks where the adversary targets a message by manipulating the other
messages in the system are a widespread problem in mix-based systems. Solutions
fall into three categories: attempts to prevent the attack, attempts to slow the
attack, and attempts to detect and punish the attacker.

One prevention technique requires each sender to acquire a ticket for each mix
in his path before joining a given batch (the senders receive blinded tickets [5]
so the mixes cannot trivially link them to their messages). Mixes ensure their
messages come from distinct senders, so Alice can expect good mixing at each
honest node in her path [1]. For cascades this approach is clearly efficient because
Alice only needs tickets for her chosen cascade [3], but her anonymity set is
still limited to that one cascade. We conjecture that other topologies can give
equivalent anonymity while only obtaining tickets from a fraction of the mixes,
but we leave that analysis to future work. A bigger problem with the ticket
scheme, however, is the feasibility of requiring all users to register with the
mixes: it is hard to imagine that attackers can be excluded from being registered
in an open network [13]. Other prevention techniques use complex cryptography
to provide robustness [18] — messages are only delivered if a threshold of the
mixes agree that the batch has been properly processed.



Techniques to slow the blending attack are generally designed for asyn-
chronous mix networks. In Mixmaster and Mixminion, the goal of the batching
algorithm is to hide from the adversary when an outgoing message entered the
mix. Mixes ‘pool’ some messages from previous batches, to try to mix them as
far back as possible. These approaches force the adversary to spend more time
and messages on the attack [24]. Some designs allow a pool mix to commit to its
choice of randomness to allow verifying its behavior [15]. Link encryption, as well
as Babel’s inter-mix detours [17] and early Onion Routing’s loose routing [16],
aim to block a limited adversary from knowing when his message has exited
a mix. This also complicates blending because even the sender cannot always
recognize a message he created. In stop-and-go mixes [20], each sender specifies
a time window for each mix in his path: as with synchronous batching designs,
messages arriving outside the time window are dropped, so the attacker cannot
arbitrarily delay messages without destroying them.

Other approaches aim to detect and deter misbehavior. Chaum suggests al-
lowing each sender to examine the output of each mix [4], but this approach scales
poorly. Danezis and Sassaman propose a ‘heartbeat’ dummy scheme [9] for asyn-
chronous pool mix networks: dummies are sent from a node in the network back
to itself, creating an early warning system to detect if the adversary is launching
a blending attack. Reliability mechanisms aim to improve a sender’s long-term
odds of choosing a mix path with well-behaving nodes. The witness-and-receipt
system in [11] provides such a reputation system for synchronous-batching net-
works. Another reputation system for cascades [12] allows mixes to send test
messages into the network to detect misbehavior. Finally, randomized partial
checking [19] allows each mix to show evidence of its correctness by revealing a
pseudo-randomly selected subset of its input-output relationships, while the mix
network as a whole still protects linkability with high probability.

Clearly much work has been done to address blending attacks. Each topology
seems to have some plausible partial solutions.

4 Threat model and mixnet topologies

Our analysis considers a slight variant on the traditional powerful adversary
who observes globally and controls a fraction of the nodes [3]. We assume the
adversary compromises nodes at random rather than in a targeted fashion (see
Section 6.1 for more discussion on this point). Along with being able to control
some of the nodes, our adversary can observe messages from senders to the
mixnet and from the mixnet to receivers, but our initial analysis assumes he
cannot observe the links between honest nodes in the mixnet (in Section 6.4 we
argue that with high probability, observing these links will not yield much new
information anyway). This paper only examines sender anonymity, though many
of the advantages of synchronous batching may carry over to receiver anonymity.

We assume that selective forwarding will be discovered, and either the attack
will be prevented or the malfunctioning node will be removed from the network
(see Section 3.3). We address the attack of intersecting individual batches in



Section 3.2 (under “determining the next mix”), but unsurprisingly, we leave the
long-term intersection attack [2, 7] unsolved. Further active attacks to degrade
anonymity are described in Section 7.3.

We analyze a 16 node mixnet where all messages follow a four node path.
Besides being a tractable size for analysis, 16 nodes also approximates deployed
mixnets. (Mixminion currently has between 20 and 30 active nodes.) One might
argue that a 4 node mixnet gives better security, because all messages are mixed
together in any topology. We assume a larger network is needed because 1) the
bandwidth of a single node may be insufficient to handle all the traffic; 2) a
single path may not include as many choices for jurisdiction as some users want;
and 3) a single path is not very robust, either to network attacks or to nature.

Messages proceed through the network in layers; all the nodes in a layer
process messages of one mixnet batch at the same time. In general we describe
networks as wx`, where w is the number of nodes at each layer and ` is the
number of nodes in a path. We consider three basic topologies: a 4x4 cascade
mixnet in which all messages pass through four cascades of length four; a 4x4
stratified mixnet, in which all messages pass through four layers of disjoint nodes
such that messages may pass from any node at one layer to any node at the next
layer; and a 16x4 free-route mixnet, in which all nodes may receive messages at
all layers. Note that because free-route nodes are reused, ‘16x4’ does not mean
64 nodes. Examples of the three topologies are illustrated below.

A

B D

C

Fig. 1. A 2x2 cascade
mix network (4 nodes)

A

B D

C

Fig. 2. A 2x2 stratified
network (4 nodes)

A

B B

A

C

D D

C

Fig. 3. A 4x2 free-route
mix network (4 nodes)

5 Modeling Methodology

The basic model underlying our comparative study of mix network topologies
is mixing as probabilistic permutation. At the cost of a few simplifying but rea-
sonable assumptions about distribution of message traffic in the network, we
obtain a tractable Markov chain model, and use a fully automated probabilistic
model checking technique to compute probability distributions for different net-



work topologies and configurations. We use entropy of each topology’s respective
distribution as our comparison metric, in the spirit of [10, 23].

5.1 Mixing as permutation

Consider a single batch of N messages entering the mix network together. We
can view each message m1, . . . ,mN as occupying a certain position in a (virtual)
input array of length N . Suppose the adversary targets a particular message
m in position i. Without loss of generality, assume that i = 1 (we can always
re-number the input array so that the targeted message is in the first slot).

Having passed the network, all N messages re-appear and may be observed
by the adversary again. Of course, if some of the network nodes have been com-
promised by the adversary, the adversary will have access to their observations,
too. Let m′

1, . . . ,m
′
N be the (virtual) output array. Due to the mixing performed

by the network, it may or may not be the case that m′
i = mi, i.e., the mes-

sages have been probabilistically permuted by the network. We will refer to the
discrete probability distribution p1 . . . pN , where pi = Prob(m′

i = m), as the
mixing distribution of the network. Informally, each pi is the probability that
the targeted message m re-appears in the ith position of the output buffer.

In our basic model, we assume that the network doesn’t lose messages (this re-
striction is not critical and may be relaxed, if necessary). Therefore,

∑
1≤i≤N pi =

1, and pi form a proper discrete probability distribution. Following [23], we cal-
culate entropy of this distribution as

E = −
∑

1≤i≤N

pi log2(pi)

Very informally, entropy is a measure of “randomness” in a distribution. Other
things being equal, network topologies that provide mixing distributions associ-
ated with higher entropy values are considered preferable.

5.2 Overview of the model

We use the standard techniques of probabilistic verification and model the mix
network as a discrete-time Markov chain. Formally, a Markov chain consists of a
finite set of states S, the initial state s0, the transition relation T : S×S → [0, 1]
such that ∀s ∈ S

∑
s′∈S T (s, s′) = 1, and a labeling function.

In our model, the states of the Markov chain will represent the position of the
targeted message m in the (virtual) buffer of N messages as m moves through
the network. The initial state s0 corresponds to the message being in the first slot
of the input array prior to entering the mix network. Every probabilistic state
transition s → s′ is associated with m passing through a single mix within the
network. Intuitively, s can be interpreted as m’s position before passing through
the mix, and s′ as its position afterwards.

For the purposes of computing the mixing distribution pi, we are interested
in deadlock states, i.e., those corresponding to the situation in which m has



passed through all mixes in its path and exited the mix network with no further
transitions possible. Suppose a special predicate done is true in such states. Then
pi is simply Prob[U(s = i ∧ done)] evaluated in the initial state s0. (Informally,
formula Uϕ holds if ϕ eventually becomes true.)

We use a probabilistic model checker called PRISM [14] to compute these
probabilities automatically. We omit the details of the underlying model checking
algorithms; a detailed explanation of how probabilistic model checking is used
to analyze randomized routing protocols can be found in [25].

5.3 Single-mix model

Consider a single mix receiving a batch of K messages, including the targeted
message m. Assume an uncompromised mix that collects all K messages be-
fore distributing them to their respective destinations. In this case, the mixing
performed by the mix can be interpreted as permutation in a virtual buffer of
size K. In particular, the targeted message m appears in any of the K output
positions with equal probability after passing through the mix. Therefore, each
honest mix can be modeled by a simple Markov chain as below (recall that state
s represents the current position of message m, and let t be the sequential num-
ber of the current hop). However, the compromised mix performs no mixing at
all, and thus does not change the position of any message it processes.

Fig. 4. Model of a good mix Fig. 5. Model of a bad mix

5.4 Network model

We consider several mix network topologies, and compare them under various
assumptions about the density of hostile mixes in the network. Instead of as-
suming a fixed number of hostile mixes, in each scenario we will assume a fixed
probability that a randomly selected mix is hostile.

For each topology, the behavior of a single node is modeled as in Section 5.3.
The main difference between topologies is how the targeted message moves
through the network, resulting in different mixing distributions p1 . . . pN .

We assume the adversary observes the edge of the network and thus knows the
first mix chosen by the targeted message—so the randomness of mix selection
is ignored for the first hop. Formally, we make probability pi conditional on
selection of a particular first mix. Instead of computing Prob[U(s = i ∧ done)],
we compute Prob[U(s = i ∧ done | mix x was selected as entry point)].



Mixing entropy vs. average density of hostile nodes
(128 messages, 16 nodes, 4 hops)

0
1

2
3
4

5
6

7
8

0% 25%
50%

75%
80%

85%
90%

95%
100%

probability of compromise for each node

en
tr

o
p

y stratified 4x4

free-route

cascade 4x4

Fig. 6. Entropy vs probability of compromise for each node (16 nodes)

Note that we must consider two sources of uncertainty. The first is the dis-
tribution of compromised nodes in the network, which we address by assuming
a fixed probability that any given node is bad. Thus we are calculating prior
distributions—effectively the average of all possible occurrences of compromised
nodes in the network. (In contrast, [10, 23] consider posterior distributions, where
certain nodes are known to be bad). The second uncertainty is the users’ selection
of message routes, which we address by treating the message load on each inter-
nal link within the network as exactly equal to the statistically expected load
given a particular network topology. This assumption is approximated with very
high probability when the number of messages in a single batch is significantly
higher than the number of network nodes (see Section 6.4 for discussion).

Intuitively, suppose there are four mixes in the first layer of the network, and
batch size is 128. We will analyze the average-case behavior of the network, i.e.,
we will assume that each of the mixes receives exactly 32 messages, even though
it is possible (albeit highly improbable) that in some batch all 128 senders will
randomly choose the same entry mix.

Under the equal loading assumption, we treat the size of the input/output
buffer for each mix (see Section 5.3) as a constant which is determined only
by batch size and network topology, and is independent of the actual random
distribution of a given batch through the network.

Appendix B provides a walk-through of calculating entropy for each topology,
to help the unfamiliar reader build intuition about our assumptions and results.

6 Graphs and Analysis

Figure 6 shows the entropy Alice can expect from each of the three topologies.
The cascade network immediately divides the incoming batch by the number of
cascades, so it provides substantially less protection even with many compro-
mised nodes. The stratified topology provides about the same expected entropy
as the free-route topology. In this section and the next we will examine other



metrics for deciding which is best. Further graphs in Appendix A indicate how
much entropy is achieved after a given number of steps through each network.

6.1 Is the adversary really randomly distributed?

To keep our model tractable, we have assumed that each node has an equal
chance of being controlled by the adversary. A real adversary might prefer to
control certain key nodes in the topology. To justify our assumption, we might
assume that secure nodes (or equivalently, vulnerable nodes) are randomly dis-
tributed. That is, rather than letting the adversary have his pick of nodes, we
instead let the adversary control all the machines that have some security vul-
nerability. A related approach would be to place particularly secure and trusted
(or at least jurisdictionally separate) nodes in key places in the topology: if such
nodes are discouragingly secure, they are no longer an appealing target.

Alternatively, the mixes can periodically generate a communally random seed
to reorganize the network [12]. Thus, being able to control or sign up a node
does not allow the adversary to dictate its position in the topology. This may
be a satisfactory solution, though it is not a complete solution because not all
nodes are equal: e.g. nodes that refuse to deliver messages to the final recipients
shouldn’t be chosen as exit nodes, so they may be less appealing targets.

6.2 Choosing the same node twice in a row

Conventional wisdom (see e.g. [8]) suggests that in a free-route network, Alice
should never pick the same node twice in a row: it increases her risk of picking
only bad nodes. We find that for a sufficiently large network, this increased
complexity in path selection has little impact on Alice’s entropy.

Intuitively, when the adversary density is low, entropy will be high in ei-
ther case; whereas when most nodes are owned by the adversary, the difference
between picking between B and B − 1 bad nodes is slight.

More formally, for G good nodes and B bad nodes, the chance of selecting
a bad node next is B−1

G+B if the current node is bad and B
G+B otherwise. The

difference is only 1
G+B : it does not depend on what fraction of the nodes are

bad. Specifically, for a 16x4 free-route mixnet (8 bad nodes), it’s a 5.1% chance
of an all bad path if a node cannot be picked twice in a row, and 6.3% chance if
it can. With 32x4, it’s 5.7% vs. 6.3%.

6.3 Reputations and Node Preferences

Most deployed systems let users choose a preferred entry or exit hop, e.g. based
on trust. A skewed distribution of messages only at the entry or exit of the
network should not impact entropy too much—we see from Figures 7-9 that
much of each network’s entropy is achieved from just a few hops.

Reputation systems, on the other hand, encourage users to prefer certain
nodes at each layer of the network. Further, reputation information can be ex-
ploited by an adversary to reduce anonymity, for example by predicting the



user’s behavior based on reputation statistics, or by attracting more traffic by
building a strong reputation or degrading the reputation of others. Placing nodes
with similar reputation in the same layer of a stratified network, or placing them
in the same cascade, might complicate these attacks, but employed naively, this
can facilitate other attacks [12]. This topic merits further investigation.

6.4 Average Entropy vs Actual Entropy

The graphs and analysis above are for average entropy—the network’s behavior
for very large batches. But in reality the batch size may be quite small, and
each sender chooses paths independently from the others. We must consider the
possible variance in entropy depending on the actual path choices.

For m messages to u buckets (nodes in a layer), we find the chance that any
bucket will have less than p messages based on Maxwell-Boltzmann statistics
and inclusion-exclusion:

(
u

1

) p∑
i=0

(
1
u

)i(1− 1
u

)m−i

(
m

i

)
−

(
u

2

) p∑
i=0

p∑
j=0

(
1
u

)i(
1
u

)j(1− 2
u

)m−i−j

(
m

i, j

)

+
(

u

3

) p∑
i=0

p∑
j=0

p∑
k=0

(
1
u

)i(
1
u

)j(
1
u

)k(1− 3
u

)m−i−j−k

(
m

i, j, k

)
− . . .

For m = 128 messages and u = 4 nodes (i.e. cascade or stratified network),
the chance of any node getting less than 16 messages (compared to the 32 we
expect each to get) is 6 · 10−4—meaning with very high probability the average
entropy represents the behavior we will see in reality. However, for u = 16 nodes
(free-route), 48% of the time some node will get less than half the expected
number; and it is not until a batch size of 480 that this metric reaches 1%.

This result makes sense: each link on a free-route network has a smaller
expected number of messages, so variations have a bigger impact. Whether it is
acceptable depends on a number of factors. First, how large do we expect batches
to be in reality? The Mixmaster network receives more than 1000 messages an
hour, which seems plenty sufficient. Second, how bad is it when a link varies by
half the expected volume? If we change our metric to require at least 2 messages
on each link, then for m = 128 we find that only 1% of the cases fall outside this
value. Another significant question is how the number of layers affects the results:
the more layers, the greater the chance that some of them are well balanced. The
exact relation and its effect on entropy are open questions.

Danezis also considers this issue of variance from average entropy for his
mixnet design based on sparse expander graphs [6]. He argues that having at
least one message on each link is sufficient for basic protection, and he uses a
similar approach to show that his design achieves this distribution with high
probability. He further raises the idea of padding unused links to guarantee one
message on each link, with the aim of preventing trivial traffic analysis attacks.
Is it worthwhile to prevent this simple attack? Are all other attacks significantly
harder? Clearly more research remains.



6.5 Flooding attacks to degrade anonymity or service

In Section 3.3 we talk about techniques to discourage a mix from dropping or
substituting messages in the batch. But what if the adversary simply submits
more messages to the batch?

It turns out that as long as k of the n input messages come from honest
senders, Alice will still be assured that she can expect entropy based on a batch
of k messages. That is, assuming uniform distribution of messages over mixes,
the entropy of a baseline network (all-honest senders) plus hostile messages is
at least the entropy of the baseline network by itself. This is different from the
pooling batching strategy [24], where messages from the adversary will influence
the behavior (and thus entropy) of Alice’s message.

On the other hand, directed floods can overflow node capacity. We might use
techniques where mixes can prove that any output message was derived from
an input message, which reduces the problem to detecting or stopping floods at
the beginning of the batch. We might also argue that the fraction of adversary
messages in the batch limits the maximum size of the flooding attack—honest
messages will still be randomly distributed. In general, this flooding issue is an
unsolved problem for all mixnet designs; more research remains.

7 Other metrics for comparison

7.1 Throughput, delay, capacity, bandwidth

One parameter we cannot control is the rate that messages arrive to the mixnet.
Similarly, we cannot control the latency that users will be willing to accept. To
make the analysis more concrete, assume we choose ` = 4, that users deliver
128 messages every 3 hours, and that users will tolerate a latency of 3–6 hours
(which is on par with the latency experienced by a typical Mixmaster message,
though it could be much longer in theory).

We can compute the maximum flow rate (traffic in unit time) through any
given node. Assume that sending a message over a single hop consumes a fixed
amount of network traffic; we can then use that as the unit for traffic. Let Tbatch

be the expected throughput in a single batch period, i.e. the number of messages
that go through the network in a batch. If the available nodes are used optimally
(see Section 6.4), the flow rate required through each node is Tbatch

w·thop
= `·Tbatch

w·tbatch
.

If we choose tbatch ' `thop, all messages clear the mixnet before the next
batch enters: we introduce a batch of 128 messages every 3 hours. We get 42.7
messages/hour for all three topologies. Latency is between 3 hours and 6 hours,
depending on when Alice’s message arrives. By accepting messages over a large
amount of time, we get better expected entropy; make the actual behavior of
the network closer to the expected behavior of the network (as in Section 6.4);
and smooth spikes and troughs in the rate of incoming messages.

In the free-route network, each node needs to process 8 messages at a time
and is active at each layer. The cascade and stratified networks require a larger
capacity from each node: they must handle 32 messages at once (128/w), but



they are idle for all but one hop in the batch. One could imagine a systolic
or pipelined network where tbatch = thop and 32 messages are let in every 45
minutes. In this case the capacity of nodes in cascade and stratified networks
would also be 8, and indeed the latency could be cut to between 3 hours and 3
hours 45 minutes—but the expected entropy would be cut by a factor of `.

Bandwidth is acceptable. Assuming a higher load of 5000 messages per batch,
and 32KB per message (as in Mixminion), nodes in the free-route system use less
than 4KB/s (nodes in the other topologies use 16KB/s but only 1/4 as often).
That’s well within the capabilities of current Mixmaster nodes.

7.2 Robustness of Message Delivery

Better entropy can be achieved by longer routes: e.g., if we form our 16 nodes
into a 1x16 cascade or a 16x16 free-route, there is almost no falloff in entropy
until each node has a ninety percent chance of being compromised. But this
ignores robustness of message delivery. For the free-route 16x16 mixnet with
only a single node failure, nearly two thirds of messages will be undelivered
(because they will need to pass through it at some point). The 1x16 cascade
is even worse: a single node crash blocks all message delivery. (We might take
advantage of schemes to bypass a single failed node [22], but it’s not clear how
this works with the synchronous approach in all topologies.) Parallel cascades
can be added to the network, but unlike the free-route, they will a priori reduce
the entropy of an input message for a given size mixnet batch. We must be sure
to consider robustness when comparing topologies.

Topology 1 crash 2 crash 3 crash 4 crash

16x16 free 36 12 04 01

Worst possible 4x4 cascade 75 50 25 00

adversary distribution 4x4 stratif. 75 50 25 00

16x4 free 77 59 44 32

16x16 free 36 12 04 01

Best possible 4x4 cascade 75 75 75 75

adversary distribution 4x4 stratif. 75 56 42 32

16x4 free 77 59 44 32

16x16 free 36 12 04 01

Expected percentage: 4x4 cascade 75 55 39 27

rand. adversary dist. 4x4 stratif. 75 55 39 27

16x4 free 77 59 44 32

Table 1. Percent of messages delivered vs number of crashed nodes

Table 1 shows that 4x4 cascades and 4x4 stratified networks do roughly the
same on average, but this is for very different reasons. The chance that the



configuration will block all messages increases much more quickly for cascades,
but the maximum possible delivery of messages remains much higher. This can
be seen in the table reflecting the most favorable adversary distribution for up
to four node crashes. To further illustrate, if half of the nodes are bad in the
4x4 cascade topology, then in about 1 in 6 cases a quarter of the messages get
through, and in exactly 6 cases of 12870, half of the messages get through the
cascades. For all other distributions, no messages get through. If half of the nodes
are bad in the 4x4 stratified network, then the highest percentage of messages
that can pass through is 6.25. However, some messages will be passed in the
majority of adversary distributions.

Of the scenarios we have considered, a 16x4 free route has the best expected
chance of message delivery for random adversary distribution. It outperforms the
others, unless the adversary has a particularly innocuous distribution. Cascades
do better under favorable distributions, which are also much rarer for cascades
than other topologies. Also note that the expected fraction of passed messages
is the same for free routes regardless of which nodes fail: it is the most robust
with respect to adversary distribution as well as adversary size.

7.3 Robustness of Anonymity

Robustness of anonymity against active attacks is harder to determine, as such
attacks can take on a variety of forms. In the simplest case though, we can
consider the effect on anonymity of simple node crash, since this is the most
straightforward way to actively shrink anonymity. Also, as discussed in Sec-
tion 3.3, there are techniques to detect and/or deter more selective attacks.

The threat model we consider here is an extension of the one in Section 4. As
before, the adversary can watch senders and receivers. But now, besides failing to
mix, hostile nodes may also crash—failing to deliver any of their input messages.
A combination of active attacks and observations (including some internal ob-
servations) should prove the most devastating to anonymity. However, we leave
full examination of this for future work. Here we concentrate on the effect of
such intentional crash failures on entropy for a mixnet periphery observer.

Anonymity of cascades is unaffected by this threat model. Since each cascade
batch is independent of the others, any node that crashes will wipe out all the
messages in that anonymity set. Anonymity robustness of stratified and free-
route topologies is more complex.

For a stratified network, if any entry node fails, the number of messages
drops by one quarter, causing a reduction in entropy of .42. If two entry nodes
fail, the entropy drops by 1. If 3 entry nodes fail, entropy drops by 2. If all
fail, the adversary learns nothing more than if none fail. If a second layer node
fails, assuming a balanced layer-two distribution, anonymity of all messages is
unaffected since there is no change to the probability that an exiting message was
any incoming message. Note this is so even if the distribution of messages across
entry nodes is highly skewed. If the layer-two distribution is skewed, then a node
may fail with some effect on entropy. However, the ability to affect anonymity
in this way should be very small for randomly chosen routes. Ignoring the small



effect of such non-entry-layer failures, we see that the anonymity of a stratified
network given node crashes is usually better and at worst equal to that of the
cascade topology.

Free routes are even more complex. For entry layer nodes, the initial effect of
each crash is clearly smaller. However, since nodes are used at multiple layers,
a message that reaches a crashed node at a given layer could not have been
routed through that node at any earlier layer. Further, the attacker may gain
additional information by crashing nodes only at certain layers! Even worse, as
the ratio of input messages to width of a layer shrinks, it becomes more likely
that nodes at a given layer will only receive messages from a subset of nodes at
the previous layer or, in any case, that the layer distribution will be unbalanced
between nodes to a significant degree.

On the other hand, because nodes are recycled for use at multiple layers, it
is much harder to plan an attack. If nodes can’t crash and then come back in a
single batch (perhaps it’s hard to do undetectably), crashing an entry node to
reduce the anonymity of a message at another node may cause that message to
be blocked when it must traverse the crashed node at a later layer. But it will
generally be hard to predict when to come up beyond a few layers, because the
targeted message will likely be coming from any of the remaining nodes after
that much mixing.

To get some handle on this complex situation, we will consider a very lucky
adversary. The adversary controls a quarter of the nodes in a 16x4 recycling
free-route. Suppose a message enters the mixnet at a node not under adversary
control, and the adversary crashes all of its nodes. Messages drop by a quarter.
If the layer-2 distribution is such that the layer-1 node that received the target
does not send any messages to the four adversary nodes, they remain crashed.
Assuming that a quarter of the remaining messages are addressed to them at
layer-2, remaining messages are now .56 of the original batch. Repeat for layer-3
and layer-4. Remaining messages are down to .32 of the original mixnet batch.
In this case, despite all the luck of the adversary, the anonymity is thus still
better than that of a message sent into a cascade processing a quarter of the
original mixnet batch.

We have not considered all possible active attacks. But for those we have
considered, the best choice for anonymity robustness appears to be the free
route, and worst is the cascade. We invite further research.

7.4 Comparison with Asynchronous Batching Designs

We have shown synchronous free-routes can provide good anonymity, but we
must also begin comparing this design to more traditional asynchronous free-
route designs like Mixminion. Synchronous batching needs no replay cache (each
message is labeled with its batch), weakens partitioning attacks from blending
and key rotation, and generally provides clearer anonymity guarantees.

On the other hand, because Mixminion’s pool batching strategy spreads out
message distributions between batches, our design may fall more quickly to long-
term statistical disclosure attacks [7]. Our design is also less robust to transient



failures: a late Mixminion message still arrives, whereas in our system a node
that is down throughout thop loses all messages going through it. (Stratified and
cascade networks have the lowest chance of being down in a hop period they
are needed, but free-route networks lose proportionally fewer messages from a
single down node.) But our design can tell the user for sure whether his mail
was delivered in the batch (and he can resend if not), whereas Mixminion’s
unpredictability always leaves the user wondering if it will come out sometime.

Like stop-and-go mixes [20], we may be able to get improved anonymity by
allowing Alice to choose to delay her message at a given hop until the next
batch. That is, the node would delay her message by tbatch and re-introduce it
at the same point in the path. If each message is either delayed once or not
delayed, that gives us a latency of 3 to 6 hours for non-delayed messages, 6 to
9 hours for delayed messages, and a 6-hour anonymity set (unless the attacker
knows that someone never sends or receives delayed messages, in which case the
anonymity set for those users is still 3 hours; also, if the attacker owns the node
Alice chooses, he may be able to speculate about which senders would choose to
delay messages). We leave further comparison to future work.

8 Summary

Previously, only cascade networks were considered secure against very powerful
adversaries [3]. In this paper we show that other topologies can use the syn-
chronous batching strategy to achieve similar protection. Further, we show that
free-route topologies with synchronous batching compare favorably to cascade
networks. We invite further analysis of the trade-offs between each topology.

Acknowledgments

We acknowledge David Hopwood for the ideas and arguments behind Sections 2
and 3; and we thank LiWu Chang, Camilla Fox, Rachel Greenstadt, Chris Laas,
Ira Moskowitz, and Itamar Shtull-Trauring for probability discussions.

References

1. Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web MIXes: A system for
anonymous and unobservable Internet access. In H. Federrath, editor, Designing
Privacy Enhancing Technologies: Workshop on Design Issue in Anonymity and
Unobservability, pages 115–129. Springer-Verlag, LNCS 2009, 2000.

2. Oliver Berthold and Heinrich Langos. Dummy traffic against long term intersection
attacks. In Roger Dingledine and Paul Syverson, editors, Proc. Privacy Enhancing
Technologies workshop (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

3. Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke. The disadvantages of
free MIX routes and how to overcome them. In H. Federrath, editor, Proceed-
ings of Designing Privacy Enhancing Technologies: Workshop on Design Issues in
Anonymity and Unobservability. Springer-Verlag, LNCS 2009, July 2000.



4. David Chaum. Untraceable electronic mail, return addresses, and digital pseudo-
nyms. Communications of the ACM, 4(2), February 1982.

5. David Chaum. Blind signatures for untraceable payments. In D. Chaum, R.L.
Rivest, and A.T. Sherman, editors, Advances in Cryptology:Proceedings of Crypto
82, pages 199–203. Plenum Press, 1983.

6. George Danezis. Mix-networks with restricted routes. In Roger Dingledine, editor,
Proceedings of Privacy Enhancing Technologies workshop (PET 2003). Springer-
Verlag, LNCS 2760, March 2003.

7. George Danezis. Statistical disclosure attacks: Traffic confirmation in open envi-
ronments. In Gritzalis, Vimercati, Samarati, and Katsikas, editors, Proceedings
of Security and Privacy in the Age of Uncertainty, (SEC2003), pages 421–426,
Athens, May 2003. IFIP TC11, Kluwer.

8. George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a
type III anonymous remailer protocol. In 2003 IEEE Symposium on Security and
Privacy, pages 2–15. IEEE CS, May 2003.

9. George Danezis and Len Sassaman. Heartbeat traffic to counter (n-1) attacks. In
Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2003),
Washington, DC, USA, October 2003.

10. Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measuring
anonymity. In Roger Dingledine and Paul Syverson, editors, Privacy Enhancing
Technologies (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

11. Roger Dingledine, Michael J. Freedman, David Hopwood, and David Molnar. A
Reputation System to Increase MIX-net Reliability. In Ira S. Moskowitz, editor,
Information Hiding (IH 2001), pages 126–141. Springer-Verlag, LNCS 2137, 2001.

12. Roger Dingledine and Paul Syverson. Reliable MIX Cascade Networks through
Reputation. In Matt Blaze, editor, Financial Cryptography. Springer-Verlag, LNCS
2357, 2002.

13. John Douceur. The Sybil Attack. In Proceedings of the 1st International Peer To
Peer Systems Workshop (IPTPS 2002), March 2002.

14. M. Kwiatkowska et al. PRISM web page. http://www.cs.bham.ac.uk/˜dxp/prism/.
15. Elke Franz, Andreas Graubner, Anja Jerichow, and Andreas Pfitzmann. Compar-

ison of Commitment Schemes Used in Mix-Mediated Anonymous Communication
for Preventing Pool-Mode Attacks. In C. Boyd and E. Dawson, editors, 3rd Aus-
tralasian Conference on Information Security and Privacy (ACISP’98), number
1438 in LNCS. Springer-Verlag, 1998.

16. David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing infor-
mation. In R. Anderson, editor, Information Hiding: First International Workshop,
pages 137–150. Springer-Verlag, LNCS 1174, 1996.

17. Ceki Gülcü and Gene Tsudik. Mixing E-mail with Babel. In Network and Dis-
tributed Security Symposium (NDSS 96), pages 2–16. IEEE, February 1996.

18. Markus Jakobsson. Flash Mixing. In Principles of Distributed Computing - PODC
’99. ACM Press, 1999.

19. Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust
for electronic voting by randomized partial checking. In Proceedings of the 11th
USENIX Security Symposium, August 2002.

20. Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go MIXes: Providing
probabilistic anonymity in an open system. In Proceedings of Information Hiding
Workshop (IH 1998). Springer-Verlag, LNCS 1525, 1998.

21. Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster Protocol
— Version 2. Draft, July 2003. <http://www.abditum.com/mixmaster-spec.txt>.



22. Andreas Pfitzmann and Michael Waidner. Networks without user observability –
design options. In Proc. of EUROCRYPT 1985. Springer-Verlag, LNCS 219, 1985.

23. Andrei Serjantov and George Danezis. Towards an information theoretic metric
for anonymity. In Roger Dingledine and Paul Syverson, editors, Privacy Enhacing
Technologies (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

24. Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood:
Active attacks on several mix types. In F. Petitcolas, editor, Proceedings of Infor-
mation Hiding Workshop (IH 2002). Springer-Verlag, LNCS 2578, October 2002.

25. V. Shmatikov. Probabilistic model checking of an anonymity system. Journal of
Computer Security (selected papers of CSFW-15), 2004 (to appear).

A Entropy vs number of hops, for each topology

Free-route: mixing entropy vs. number of hops
(128 messages, 16 nodes)

0

1

2

3

4

5

6

7

8

1 hop 2 hops 3 hops 4 hops 6 hops 8 hops 16 hops

en
tr

o
p

y 25%
50%
75%

Probability of
compromise
for any node

Fig. 7. Entropy vs number of hops, for cascade network (16 nodes)

Stratified: mixing entropy vs. number of hops
(128 messages, 16 nodes)

0

1

2

3

4

5

6

7

8

1 hop 2 hops 3 hops 4 hops

en
tr

o
p

y 25%
50%
75%

Probability of
compromise
for any node

Fig. 8. Entropy vs number of hops, for
stratified network (16 nodes)

Cascade: mixing entropy vs. number of hops
(128 messages, 16 nodes)

0

1

2

3

4

5

6

1 hop 2 hops 3 hops 4 hops

en
tr

o
p

y 25%
50%
75%

Probability of
compromise
for any node

Fig. 9. Entropy vs number of hops, for
free-route network (16 nodes)



B Entropy examples for each topology

B.1 Cascade.

Consider a 2x2 cascade network as in Figure 1. Assume there are 128 messages
in a batch, and that any node has 1

4 chance of having been compromised. Let
m be the targeted message, and suppose the adversary observed that the sender
of m chose A as the first mix. Under the equal loading assumption, there are 63
other messages in addition to m that chose A as the first mix. Without loss of
generality, we may assume that m occupies the first position in A’s input buffer
of length 64.

With probability 1
4 , mix A is hostile. In this case, m remains in the first

position after passing through the mix. With probability 3
4 , mix A is honest. In

this case, m appears in any of the 64 output positions of this mix with probability
1
64 (note that m may not appear in the output buffer of mix B). The resulting
probability distribution for m’s position after passing through A is

67
256︸︷︷︸

1
4 ·1+

3
4 ·

1
64

3
256︸︷︷︸
3
4 ·

1
64

. . . 0 0 . . . 0

position 1 positions 2..64 positions 65..128

(1)

Next mix C is pre-determined by network topology, and the distribution it
produces on its messages is the same as (1). Combining two distributions, we
obtain that m appears in the cascade’s output buffer with following probabilities:

5056
65536︸ ︷︷ ︸

67
256 ·

67
256+ 3

256 ·(63·
3

256 )

960
65536︸ ︷︷ ︸

67
256 ·

3
256+ 3

256 ·(
67
256+62· 3

256 )

. . . 0 0 . . . 0

position 1 positions 2..64 positions 65..128

(2)

Entropy of this distribution is approximately 5.9082. Effective anonymity set
provided by a 2x2 cascade with 25% density of hostile nodes and 128 messages
per batch is 60 messages.

B.2 Stratified array.

The procedure for calculating mixing distribution for a stratified array is essen-
tially the same as for a cascade, but there is an additional probabilistic choice.
After the message passes through a mix, the next mix is selected randomly
among all mixes in the next layer.

Consider a 2x2 stratified array as in fig. 2. Again, assume there are 128
messages in a batch, 1

4 chance that a node is hostile, and that A was selected (in
a manner visible to the adversary) as the first mix. The mixing performed by any
single mix is exactly the same as in the cascade case, thus mixing distribution (1)
after the first hop is the same in a stratified array as in a cascade.



After the first hop, however, mix C is selected only with probability 1
2 , while

D may also be selected with probability 1
2 (by contrast, in a cascade C is selected

with probability 1). Distribution (2) has to be adjusted to take into account the
fact that mix D, selected with probability 1

2 , has a 1
4 chance of being hostile and

thus leaving each received message in the same position.

4672
65536︸ ︷︷ ︸

1
2 ·

5056
65536+ 1

2 ·
1
4 ·

67
256

576
65536︸ ︷︷ ︸

1
2 ·

960
65536+ 1

2 ·
1
4 ·

3
256

. . .
3

512︸︷︷︸
1
2 ·

3
4 ·

1
64

. . .

position 1 positions 2..64 positions 65..128

Entropy of this distribution is approximately 6.8342. Effective anonymity set
provided by a 2x2 stratified array with 25% density of hostile nodes and 128
messages per batch is 114 messages.

B.3 Free-route network.

Probability distribution is computed in exactly the same way for a free-route
network as for a stratified array, except that the entire set of mixes is treated as
a layer. Consider a 4x2 free-route network as in fig. 3. With 128 messages per
batch, the buffer for each mix is 32 messages. If A is the first mix selected (and is
hostile with probability 1

4 ), the probability distribution after the message passes
through A is

35
128︸︷︷︸

1
4 ·1+

3
4 ·

1
32

3
128︸︷︷︸
3
4 ·

1
32

. . . 0 0 . . . 0

position 1 positions 2..32 positions 33..128

The next mix is selected from among all four mixes with equal probability.
A mix other than A is selected with probability 3

4 , and has 1
4 chance of being

hostile, producing the following probability distribution:

1216
16384︸ ︷︷ ︸

1
4 · (

35
128 ·

35
128+

3
128 · (31 · 3

128 ))+
3
4 ·

1
4 ·

35
128

192
16384︸ ︷︷ ︸

1
4 · (

35
128 ·

3
128+

3
128 · (

35
128 + 30 · 3

128 ))+
3
4 ·

1
4 ·

3
128

. . .
3

512︸︷︷︸
1
4 ·

3
4 ·

1
32

. . .

position 1 positions 2..32 positions 33..128

Entropy of this distribution is approximately 6.7799 and effective anonymity set
is 110 messages — slightly lower than in a stratified 2x2 array.


