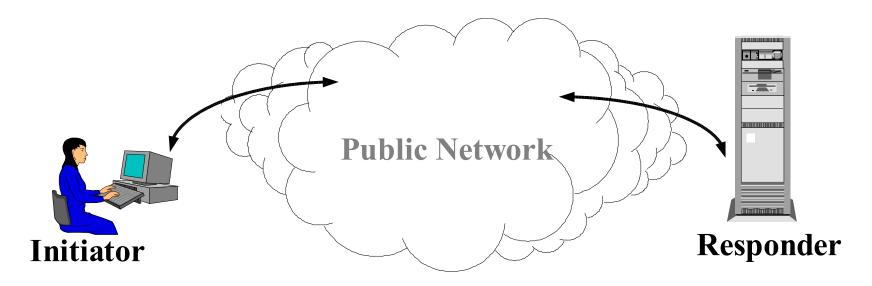
Tor:

Anonymous Communications for the Dept of Defense...and you.

Roger Dingledine The Free Haven Project

http://tor.eff.org/


April 12, CFP 2005

Talk Outline

- Motivation: Why anonymous communication?
 - Myth 1: This is only for privacy nuts.
 - Myth 2: This stuff enables criminals.
- Tor design overview
- Hidden servers and rendezvous points
- Policy issues raised
- Open technical issues and hard problems

Public Networks are Vulnerable to Traffic Analysis

- In a Public Network (Internet):
- Packet (message) headers identify recipients
- Packet routes can be tracked

Encryption does *not* hide routing information.

- Journalists, Political Dissidents, Whistleblowers
- Censorship resistant publishers/readers
- Socially sensitive communicants:
 - Chat rooms and web forums for abuse survivors, people with illnesses
- Law Enforcement:
 - Anonymous tips or crime reporting
 - Surveillance and honeypots (sting operations)
- Corporations:
 - Hiding collaborations of sensitive business units or partners
 - Hiding procurement suppliers or patterns
 - Competitive analysis

You:

- Where are you sending email (who is emailing you)
- What web sites are you browsing
- Where do you work, where are you from
- What do you buy, what kind of physicians do you visit, what books do you read, ...

Government

Government Needs Anonymity? Yes, for...

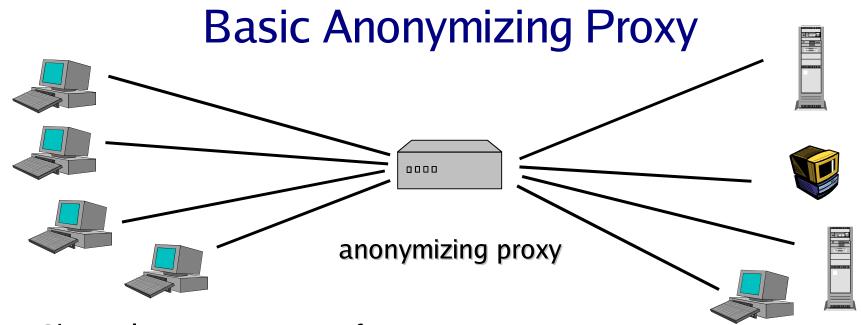
- Open source intelligence gathering
 - Hiding individual analysts is not enough
 - That a query was from a govt. source may be sensitive
- Defense in depth on open and classified networks
 - Networks with only cleared users (but a million of them)
- Dynamic and semitrusted international coalitions
 - Network can be shared without revealing existence or amount of communication between all parties

Anonymity Loves Company

- You can't be anonymous by yourself
 - Can have confidentiality by yourself
- A network that protects only DoD network users won't hide that connections from that network are from Defense Dept.
- You must carry traffic for others to protect yourself
- But those others don't want to trust their traffic to just one entity either. Network needs distributed trust.
- Security depends on diversity and dispersal of network.

And yes criminals

And yes criminals


But they already have it.

We need to protect everyone else.

Anonymous From Whom? Adversary Model

- Recipient of your message
- Sender of your message
- => Need Channel and Data Anonymity
- Observer of network from outside
- Network Infrastructure (Insider)
- => Need Channel Anonymity
- Note: Anonymous authenticated communication makes perfect sense
- Communicant identification should be inside the basic channel, not a property of the channel

Focus of Tor is anonymity of the communication pipe, not what goes through it

- Channels appear to come from proxy, not true originator
- Appropriate for Web connections, etc.:
 SSL, TLS, SSH (lower cost symmetric encryption)
- Example: The Anonymizer
- Advantages: Simple, Focuses lots of traffic for more(?) anonymity
- Main Disadvantage: Single point of failure, compromise, attack

Onion Routing Traffic Analysis Resistant Infrastructure

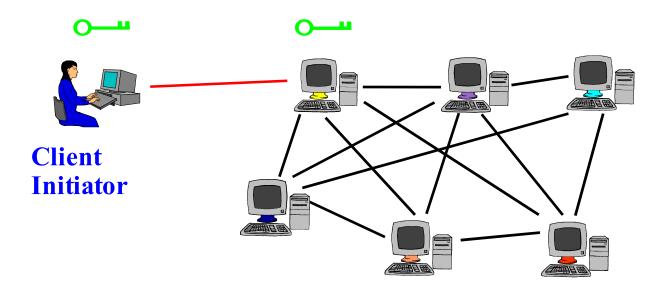
- Main Idea: Combine Advantages of mixes and proxies
- Use (expensive) public-key crypto to establish circuits
- Use (cheaper) symmetric-key crypto to move data
 - Like SSL/TLS based proxies
- Distributed trust like mixes
- Related Work (some implemented, some just designs):
 - ISDN Mixes
 - Crowds, JAP Webmixes, Freedom Network
 - Tarzan, Morphmix

Tor

Tor

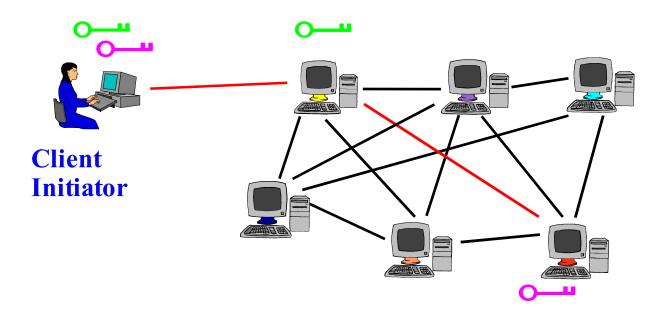
The Onion Routing

Tor


Tor's Onion Routing

Numbers and Performance

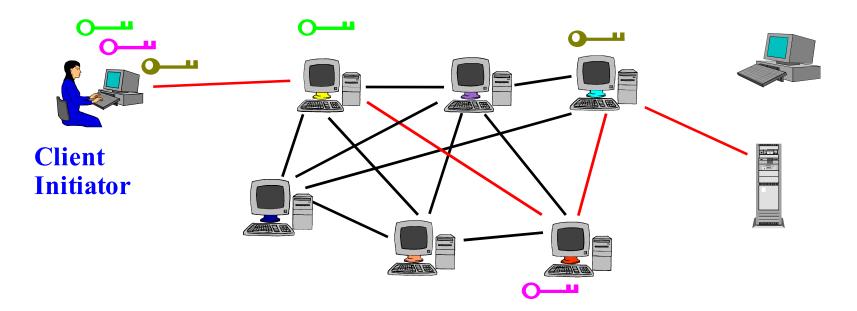
- Running since October 2003
- 100+ nodes on four continents (North America, Europe, Asia, Australia)
- Ten thousand+ (?) users
- Nodes process 1-90 GB / day application cells
- Network has never been down


Tor Circuit Setup

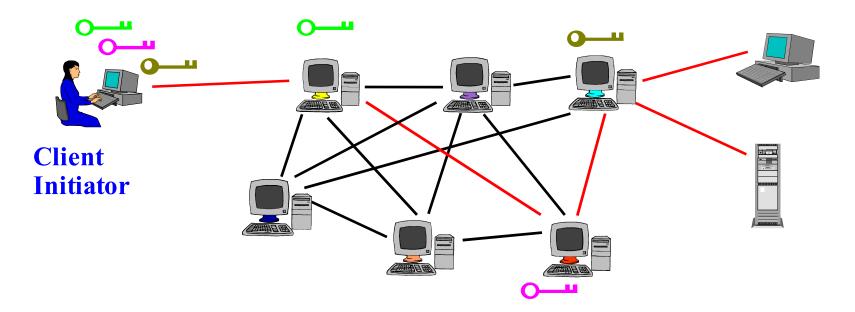
Client Proxy establishes session key + circuit w/ Onion Router 1

Tor Circuit Setup

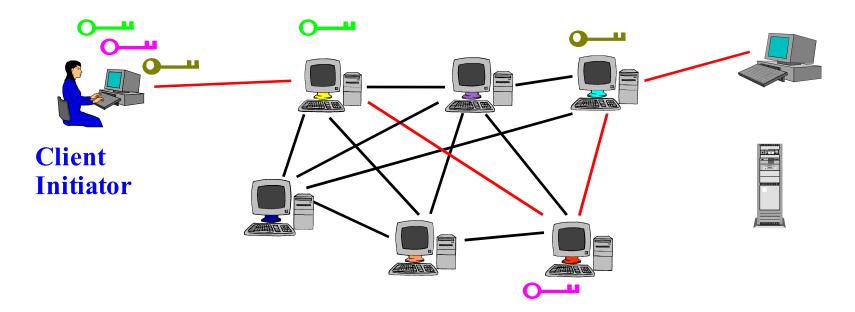
- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2


Tor Circuit Setup

- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2
- Etc


Tor Circuit Usage

- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2
- Etc
- Client applications connect and communicate over Tor circuit


Tor Circuit Usage

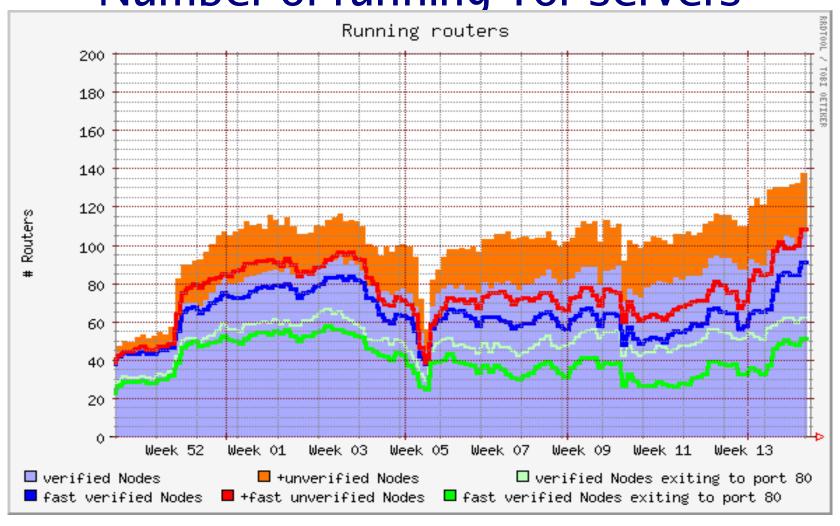
- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2
- Etc
- Client applications connect and communicate over Tor circuit

Tor Circuit Usage

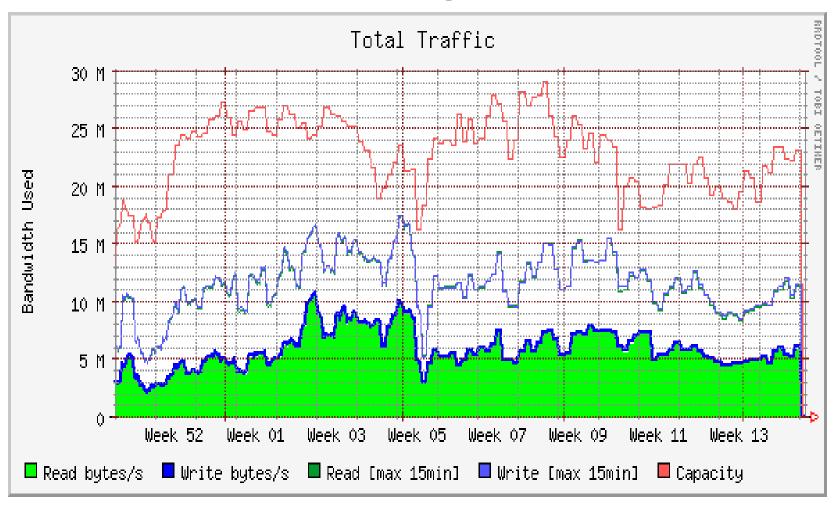
- Client Proxy establishes session key + circuit w/ Onion Router 1
- Proxy tunnels through that circuit to extend to Onion Router 2
- Etc
- Client applications connect and communicate over Tor circuit

Where do I go to connect to the network?

- Directory Servers
 - Maintain list of which onion routers are up, their locations, current keys, exit policies, etc.
 - Directory server keys ship with the code
 - Control which nodes can join network
 - Important to guard against Sybil attack and related problems
 - These directories are cached and served by other servers, to reduce bottlenecks


Some Tor Properties

- Simple modular design, restricted ambitions.
 - ~30K lines of C code
 - Even servers run in user space, no need to be root
 - Flexible exit policies, each node chooses what applications/destinations can emerge from it


Some Tor Properties

- Lots of supported platforms:
 Linux, BSD, MacOS X, Solaris, Windows, ...
- Deployment paradigm:
 - Volunteer server operators
 - No payments, not proprietary
 - Moving to a P2P incentives model

Number of running Tor servers

Total traffic through Tor network

Location Hidden Servers

- Alice can connect to Bob's server without knowing where it is or possibly who he is
- Can provide servers that
 - Are accessible from anywhere
 - Resist censorship
 - Require minimal redundancy for resilience in denial of service (DoS) attack
 - Can survive to provide selected service even during full blown distributed DoS attack
 - Resistant to physical attack (you can't find them)

Get the Code, Run a Node! (or just surf the web anonymously)

- Current code freely available (3-clause BSD license)
- Comes with a specification the JAP team in Dresden implemented a compatible Tor client in Java
- Design paper, system spec, code, see the list of current nodes, etc.
- http://tor.eff.org/

Policy issues

- Spam / spam blacklists
- Wikipedia
- Internet Relay Chat (IRC)

Good time for anonymous credentials?

Tradeoffs

- Low-latency (Tor) vs. high-latency (Mixminion)
- Packet-level vs stream-level capture
- Padding vs. no padding (mixing, traffic shaping)
- UI vs. no UI
- AS-level paths and proximity issues
- Incentives to run servers / allow exits
- Enclave-level onion routers / proxies / helper nodes
- Path length? (3 hops, don't reuse nodes)
- China?
- P2P network vs. static network