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Tor:  Big Picture
● Freely available (Open Source), unencumbered.
● Comes with a spec and full documentation:  

Dresden and Aachen implemented compatible Java 
Tor clients; researchers use it to study anonymity.

● 1500 active relays, 200000+ active users, >1Gbit/s.
● Official US 501(c)(3) nonprofit. Seven funded 

developers, dozens more dedicated volunteers.
● Funding from US DoD, Electronic Frontier 

Foundation, Voice of America, a French NGO, 
Google, NLnet, ...you?
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Anonymity serves different 
interests for different user groups.
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Anonymity serves different 
interests for different user groups.
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The simplest designs use a single 
relay to hide connections.
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But a single relay (or eavesdropper!) 
is a single point of failure.
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So, add multiple relays so that
no single one can betray Alice.
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A corrupt first hop can tell that 
Alice is talking, but not to whom.
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A corrupt final hop can tell that 
somebody is talking to Bob,

but not who.
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Alice makes a session key with R1
...And then tunnels to R2...and to R3
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The basic Tor design uses a simple 
centralized directory protocol.
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16bit AES counter mode
● [Fixed in Tor 0.0.6.1, 6 May 2004]
● At the time, OpenSSL didn't have AES. 

Later, it still didn't have counter mode.
● We were resetting our counter after 16 bits.
● Conclusion: a second implementation is a 

really good idea.
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2byte relay cell length overflow
● [Fixed in Tor 0.1.0.10, 14 June 2005]
● When we moved our cell size from 256 

bytes (length can fit in 1 byte) to 512 bytes 
(length fits in 2 bytes), we forgot to check 
if the cell claims a length > 512.

● ...which we then write out onto the network
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DiffieHellman handshake bug
● [Fixed in Tor 0.1.0.14, 8 Aug 2005]
● OpenSSL didn't check for trivial keys (like 

g^0) in DH keys. (Now it does.)
● This meant your entry hop could MitM you 

and spoof the whole rest of the network.
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Keep building circuits until you lose
● [Fixed in Tor 0.1.1.11-alpha, 10 Jan 2006]
● Attacker runs a few relays and waits for 

you to choose them as first and last hop
● (Or runs just one relay and induces your 

hidden service to build circuits)
● The fix is entry guards: pick a few relays 

for your first hop and stick with those.
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Clients would route traffic
● [Fixed in Tor 0.1.1.23, 3 Aug 2006]
● Normally the client connects to the first hop 

and sends a “create” cell to establish a 
circuit, then sends “extend” relay cells to 
make further hops.

● Turns out the entry node could send 
“create” and “extend” cells back to the 
client!
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Pump the network full of
Stable / Fast / Guard nodes

● [Fixed in Tor 0.2.0.3-alpha, 27 Jul 2007]
● Tor dir authorities assign Stable flag to the 

relays with median uptime; Guard to relays 
with median uptime and median bandwidth.

● So start up 1500 relays with 10 years 
uptime and 1GB/s bandwidth, and suddenly 
you bump the Guard status off of all the 
other relays!
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Cross-protocol HTTP form attack

● [Fixed in Tor 0.1.2.16, 2 Aug 2007]
● Tor runs a Control Port so other apps can 

connect and help configure, display, etc.
● Binds only to localhost. So we're safe!
● But the user runs a browser, and browsers 

can be induced to do all sorts of things.
● Now use password / cookie auth by default. 

But how to share passwords between apps?
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Exit policies allowed local connect

● [Fixed in Tor 0.1.2.19, 7 Jan 2008]
● The default exit policy refused 127/8, 10/8, 

192.168/16, etc etc.
● But you could still reach the public IP 

address of the relay, from the relay.
● ...which was often a linksys router.
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Debian RNG flaw

● [Addressed in Tor 0.2.0.26-rc, 13 May 2008]
● 300 out of ~1500 Tor relay identity keys 

were bad.
● Logged traffic breakable too--if the client 

was Debian, or if it used only Debian relays!
● Three out of the six v3 dir authority keys 

were bad. Four would have really sucked.
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Infinite length circuits

● [Fixed in, uhm, soon]
● Clients can just keep extending their circuit 

forever. (Tor relays can't figure out what 
hop in the path they are.)

● First, this is a DoS multiplier.
● Then, it's an anonymity attack! (See later 

talk by Christian Grothoff, Nate Evans)
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Snooping on Exit Relays (1)
● Lots of press last year about people 

watching traffic coming out of Tor. (Ask 
your lawyer first...)

● Tor hides your location; it doesn't 
magically encrypt all traffic on the Internet.

● Though Tor does protect from your local 
network.
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Snooping on Exit Relays (2)
● https as a “premium” feature
● Should Tor refuse to handle requests to port 

23, 109, 110, 143, etc by default?
● Torflow / setting plaintext pop/imap “traps”
● Need to educate users?
● Active attacks on e.g. gmail cookies?
● Some research on exit traffic properties is 

legitimate and useful. How to balance?
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Who runs the relays? (1)
● At the beginning, you needed to know 

me to have your relay considered 
“verified”.

● We've automated much of the “is it 
broken?” checking.

● Still a tension between having lots of 
relays and knowing all the relay 
operators
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Who runs the relays? (2)
● What if your exit relay is running 

Windows and uses the latest anti-virus 
gadget on all the streams it sees?

● What if your exit relay is in China and 
you're trying to read BBC?

● What if your exit relay is in China and 
its ISP is doing an SSL MitM attack on 
it? (What if China 0wns a CA?)
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Who runs the relays? (3)
● What happens if ten Tor relays show up, 

all on 149.9.0.0/16, which is near DC?
● “EnforceDistinctSubnets” config option 

to use one node per /16 in your circuit 
(Tor 0.1.2.1-alpha, 27 August 2006)

● No more than 2 relays on one IP address 
(Tor 0.2.0.3-alpha, 29 July 2007)

● How about ASes? IXes? Countries?
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Tor Browser Bundle traces
● We want to let you use Tor from a USB 

key without leaving traces on the host
● “WINDOWS/Prefetch” trace
● Windows explorer's “user assist” 

registry entry
● Vista has many more?
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Applicationlevel woes (1)
● Javascript refresh attack
● Cookies, History, browser window size, 

user-agent, language, http auth, ... 
● Mostly problems when you toggle from 

Tor to non-Tor or back
● Mike Perry's new Torbutton 1.2.0 

tackles many of these (30 July 2008)
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Some Firefox privacy bugs remain
● No way to configure/spoof timezones
● “Livemarks” / “Live bookmarks” does a 

lookup over Tor when Firefox starts.
● Client-side SSL certs are messy to 

isolate (Firefox happily sends them to 
the remote website even via Tor)

● The TLS ClientHello message in FF2 
uses uptime for the “time” variable!
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Applicationlevel woes (2)
● Some apps are bad at obeying their 

proxy settings.
● Adobe PDF plugin. Other plugins. 

Extensions. Especially Windows stuff.
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Transparent proxying
● Easy to do in Linux / BSD: iptables/pf, 

getsockopt()/getsockname(), done.
● Put Tor client in a Linux QEMU running 

inside Windows. Then intercept 
outgoing traffic from Windows apps. Or,

● Put Tor client and apps inside a Linux 
QEMU, and launch it from Windows.
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Filtering connections to Tor

● By blocking the directory authorities
● By blocking all the relay IP addresses in 

the directory
● By filtering based on Tor's network 

fingerprint
● By preventing users from finding the 

Tor software
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Traffic confirmation
● If you can see the flow into Tor and the 

flow out of Tor, simple math lets you 
correlate them.

● Defensive dropping (2004)? Adaptive 
padding (2006)?

● Nick Feamster's AS-level attack (2004), 
Steven Murdoch's sampled traffic analysis 
attack (2007).
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Website fingerprinting
● If you can see an SSL-encrypted link, you 

can guess what web page is inside it based 
on size.

● Does this attack work on Tor? “maybe”
● Considering multiple pages (e.g. via 

hidden Markov models) would probably 
make the attack even more effective.
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Clogging / Congestion attacks
● Murdoch-Danezis attack (2005) sent 

constant traffic through every relay, and 
when Alice made her connection, looked 
for a traffic bump in three relays.

● Hopper et al (2007) extended this to 
(maybe) locate Alice based on latency.

● Chakravarty et al (2008) extended this to 
(maybe) locate Alice via bandwidth tests.
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Profiling at exit relays
● Tor reuses the same circuit for 10 minutes 

before rotating to a new one.
● (It used to be 30 seconds, but that put too 

much CPU load on the relays.)
● If one of your connections identifies you, 

then the rest lose too.
● What's the right algorithm for allocating 

connections to circuits safely?
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Declining to extend
● Tor's directory system prevents an attacker 

from spoofing the whole Tor network.
● But your first hop can still say “sorry, that 

relay isn't up. Try again.”
● Or your local network can restrict 

connections so you only reach relays they 
like.
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Traffic correlation
● It's just going to get better.
● E.g., maybe somebody publishes mrtg 

graphs or other apparently innocent data, 
and that turns out to be enough?

● Smoke ping data for all the relays?
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Countries blocking Tor network
● Blocking the website is a great start
● Eventually, they'll block the Tor relays, 

and bridges will be needed
● Then the arms race for blocking bridge 

relays will start.
● E.g., Vidalia bridge lookup enumeration 

bug (fixed in Vidalia 0.1.3, 25 May 2008)
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Data retention
● Remember our threat model: even one hop in 

Germany (Europe? US?) may be too many
● How many layers of logging are there? If your 

ISP logs, and its ISP logs, ...
● How safe are these logs? Who can access 

them?
● Nothing is really enforced in Germany until 

2009, so no need to change technical designs 
immediately. But that means we need to act!
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Last thoughts
● Many of the hard research problems are 

attacks against all low-latency anonymity 
systems. Tor is still the best that we know 
of -- other than not communicating.

● People find things because of the openness 
and thoroughness of our design, spec, and 
code. We'd love to hear from you.

● Pretty much any Tor bug seems to turn into 
an anonymity attack. 


