
1

Vulnerabilities in Tor:
past, present, future

Roger Dingledine
The Tor Project

https://www.torproject.org/

2

Outline
● Crash course on Tor
● Solved / solvable problems
● Tough ongoing issues, practical
● Tough ongoing issues, research
● Future

3

Tor: Big Picture
● Freely available (Open Source), unencumbered.
● Comes with a spec and full documentation:

Dresden and Aachen implemented compatible Java
Tor clients; researchers use it to study anonymity.

● 1500 active relays, 200000+ active users, >1Gbit/s.
● Official US 501(c)(3) nonprofit. Seven funded

developers, dozens more dedicated volunteers.
● Funding from US DoD, Electronic Frontier

Foundation, Voice of America, a French NGO,
Google, NLnet, ...you?

4

Anonymity serves different
interests for different user groups.

Anonymity

Private citizens“It's privacy!”

5

Anonymity serves different
interests for different user groups.

Anonymity

Private citizens

Businesses

“It's network security!”

“It's privacy!”

6

Anonymity serves different
interests for different user groups.

Anonymity

Private citizens

Governments Businesses

“It's traffic-analysis
resistance!”

“It's network security!”

“It's privacy!”

7

Anonymity serves different
interests for different user groups.

Anonymity

Private citizens

Governments Businesses

“It's traffic-analysis
resistance!”

“It's network security!”

“It's privacy!”

Blocked users
“It's reachability!

8

The simplest designs use a single
relay to hide connections.

Bob2

Bob1

Bob3

Alice2

Alice1

Alice3

Relay

E(Bob3,“X”)

E(Bob1, “Y”)

E(Bob2, “Z”)

“Y
”

“Z”

“X”

(example: some commercial proxy providers)

9

But a single relay (or eavesdropper!)
is a single point of failure.

Bob2

Bob1

Bob3

Alice2

Alice1

Alice3

Evil
Relay

E(Bob3,“X”)

E(Bob1, “Y”)

E(Bob2, “Z”)

“Y
”

“Z”

“X”

10

So, add multiple relays so that
no single one can betray Alice.

BobAlice

R1

R2

R3

R4 R5

11

A corrupt first hop can tell that
Alice is talking, but not to whom.

BobAlice

R1

R2

R3

R4 R5

12

A corrupt final hop can tell that
somebody is talking to Bob,

but not who.
BobAlice

R1

R2

R3

R4 R5

13

Alice makes a session key with R1
...And then tunnels to R2...and to R3

BobAlice

R1

R2

R3

R4 R5

Bob2

14

The basic Tor design uses a simple
centralized directory protocol.

S2

S1
Alice

Trusted directory

Trusted directory

S3

cache

cache

Servers publish
self-signed
descriptors.

Authorities
publish a consensus
list of all descriptors

Alice downloads
consensus and
descriptors from
anywhere

15

Outline
● Crash course on Tor
● Solved / solvable problems
● Tough ongoing issues, practical
● Tough ongoing issues, research
● Future

16

16bit AES counter mode
● [Fixed in Tor 0.0.6.1, 6 May 2004]
● At the time, OpenSSL didn't have AES.

Later, it still didn't have counter mode.
● We were resetting our counter after 16 bits.
● Conclusion: a second implementation is a

really good idea.

17

2byte relay cell length overflow
● [Fixed in Tor 0.1.0.10, 14 June 2005]
● When we moved our cell size from 256

bytes (length can fit in 1 byte) to 512 bytes
(length fits in 2 bytes), we forgot to check
if the cell claims a length > 512.

● ...which we then write out onto the network

18

DiffieHellman handshake bug
● [Fixed in Tor 0.1.0.14, 8 Aug 2005]
● OpenSSL didn't check for trivial keys (like

g^0) in DH keys. (Now it does.)
● This meant your entry hop could MitM you

and spoof the whole rest of the network.

19

Keep building circuits until you lose
● [Fixed in Tor 0.1.1.11-alpha, 10 Jan 2006]
● Attacker runs a few relays and waits for

you to choose them as first and last hop
● (Or runs just one relay and induces your

hidden service to build circuits)
● The fix is entry guards: pick a few relays

for your first hop and stick with those.

20

Clients would route traffic
● [Fixed in Tor 0.1.1.23, 3 Aug 2006]
● Normally the client connects to the first hop

and sends a “create” cell to establish a
circuit, then sends “extend” relay cells to
make further hops.

● Turns out the entry node could send
“create” and “extend” cells back to the
client!

21

Pump the network full of
Stable / Fast / Guard nodes

● [Fixed in Tor 0.2.0.3-alpha, 27 Jul 2007]
● Tor dir authorities assign Stable flag to the

relays with median uptime; Guard to relays
with median uptime and median bandwidth.

● So start up 1500 relays with 10 years
uptime and 1GB/s bandwidth, and suddenly
you bump the Guard status off of all the
other relays!

22

Cross-protocol HTTP form attack

● [Fixed in Tor 0.1.2.16, 2 Aug 2007]
● Tor runs a Control Port so other apps can

connect and help configure, display, etc.
● Binds only to localhost. So we're safe!
● But the user runs a browser, and browsers

can be induced to do all sorts of things.
● Now use password / cookie auth by default.

But how to share passwords between apps?

23

Exit policies allowed local connect

● [Fixed in Tor 0.1.2.19, 7 Jan 2008]
● The default exit policy refused 127/8, 10/8,

192.168/16, etc etc.
● But you could still reach the public IP

address of the relay, from the relay.
● ...which was often a linksys router.

24

Debian RNG flaw

● [Addressed in Tor 0.2.0.26-rc, 13 May 2008]
● 300 out of ~1500 Tor relay identity keys

were bad.
● Logged traffic breakable too--if the client

was Debian, or if it used only Debian relays!
● Three out of the six v3 dir authority keys

were bad. Four would have really sucked.

25

Infinite length circuits

● [Fixed in, uhm, soon]
● Clients can just keep extending their circuit

forever. (Tor relays can't figure out what
hop in the path they are.)

● First, this is a DoS multiplier.
● Then, it's an anonymity attack! (See later

talk by Christian Grothoff, Nate Evans)

26

Outline
● Crash course on Tor
● Solved / solvable problems
● Tough ongoing issues, practical
● Tough ongoing issues, research
● Future

27

Snooping on Exit Relays (1)
● Lots of press last year about people

watching traffic coming out of Tor. (Ask
your lawyer first...)

● Tor hides your location; it doesn't
magically encrypt all traffic on the Internet.

● Though Tor does protect from your local
network.

28

Snooping on Exit Relays (2)
● https as a “premium” feature
● Should Tor refuse to handle requests to port

23, 109, 110, 143, etc by default?
● Torflow / setting plaintext pop/imap “traps”
● Need to educate users?
● Active attacks on e.g. gmail cookies?
● Some research on exit traffic properties is

legitimate and useful. How to balance?

29

Who runs the relays? (1)
● At the beginning, you needed to know

me to have your relay considered
“verified”.

● We've automated much of the “is it
broken?” checking.

● Still a tension between having lots of
relays and knowing all the relay
operators

30

Who runs the relays? (2)
● What if your exit relay is running

Windows and uses the latest anti-virus
gadget on all the streams it sees?

● What if your exit relay is in China and
you're trying to read BBC?

● What if your exit relay is in China and
its ISP is doing an SSL MitM attack on
it? (What if China 0wns a CA?)

31

Who runs the relays? (3)
● What happens if ten Tor relays show up,

all on 149.9.0.0/16, which is near DC?
● “EnforceDistinctSubnets” config option

to use one node per /16 in your circuit
(Tor 0.1.2.1-alpha, 27 August 2006)

● No more than 2 relays on one IP address
(Tor 0.2.0.3-alpha, 29 July 2007)

● How about ASes? IXes? Countries?

32

Tor Browser Bundle traces
● We want to let you use Tor from a USB

key without leaving traces on the host
● “WINDOWS/Prefetch” trace
● Windows explorer's “user assist”

registry entry
● Vista has many more?

33

Applicationlevel woes (1)
● Javascript refresh attack
● Cookies, History, browser window size,

user-agent, language, http auth, ...
● Mostly problems when you toggle from

Tor to non-Tor or back
● Mike Perry's new Torbutton 1.2.0

tackles many of these (30 July 2008)

34

Some Firefox privacy bugs remain
● No way to configure/spoof timezones
● “Livemarks” / “Live bookmarks” does a

lookup over Tor when Firefox starts.
● Client-side SSL certs are messy to

isolate (Firefox happily sends them to
the remote website even via Tor)

● The TLS ClientHello message in FF2
uses uptime for the “time” variable!

35

Applicationlevel woes (2)
● Some apps are bad at obeying their

proxy settings.
● Adobe PDF plugin. Other plugins.

Extensions. Especially Windows stuff.

36

Transparent proxying
● Easy to do in Linux / BSD: iptables/pf,

getsockopt()/getsockname(), done.
● Put Tor client in a Linux QEMU running

inside Windows. Then intercept
outgoing traffic from Windows apps. Or,

● Put Tor client and apps inside a Linux
QEMU, and launch it from Windows.

37

Filtering connections to Tor

● By blocking the directory authorities
● By blocking all the relay IP addresses in

the directory
● By filtering based on Tor's network

fingerprint
● By preventing users from finding the

Tor software

38

R4

R2

R1

R3

Bob

Alice

Alice

Alice

Alice

Alice

Blocked
User

Blocked
User

Blocked
User

Blocked
User

Blocked
User

Alice

Alice
Alice

Alice

Alice

Alice

Alice

Alice

Alice
Alice

39

Outline
● Crash course on Tor
● Solved / solvable problems
● Tough ongoing issues, practical
● Tough ongoing issues, research
● Future

40

Traffic confirmation
● If you can see the flow into Tor and the

flow out of Tor, simple math lets you
correlate them.

● Defensive dropping (2004)? Adaptive
padding (2006)?

● Nick Feamster's AS-level attack (2004),
Steven Murdoch's sampled traffic analysis
attack (2007).

41

Website fingerprinting
● If you can see an SSL-encrypted link, you

can guess what web page is inside it based
on size.

● Does this attack work on Tor? “maybe”
● Considering multiple pages (e.g. via

hidden Markov models) would probably
make the attack even more effective.

42

Clogging / Congestion attacks
● Murdoch-Danezis attack (2005) sent

constant traffic through every relay, and
when Alice made her connection, looked
for a traffic bump in three relays.

● Hopper et al (2007) extended this to
(maybe) locate Alice based on latency.

● Chakravarty et al (2008) extended this to
(maybe) locate Alice via bandwidth tests.

43

Profiling at exit relays
● Tor reuses the same circuit for 10 minutes

before rotating to a new one.
● (It used to be 30 seconds, but that put too

much CPU load on the relays.)
● If one of your connections identifies you,

then the rest lose too.
● What's the right algorithm for allocating

connections to circuits safely?

44

Declining to extend
● Tor's directory system prevents an attacker

from spoofing the whole Tor network.
● But your first hop can still say “sorry, that

relay isn't up. Try again.”
● Or your local network can restrict

connections so you only reach relays they
like.

45

Outline
● Crash course on Tor
● Solved / solvable problems
● Tough ongoing issues, practical
● Tough ongoing issues, research
● Future

46

Traffic correlation
● It's just going to get better.
● E.g., maybe somebody publishes mrtg

graphs or other apparently innocent data,
and that turns out to be enough?

● Smoke ping data for all the relays?

47

Countries blocking Tor network
● Blocking the website is a great start
● Eventually, they'll block the Tor relays,

and bridges will be needed
● Then the arms race for blocking bridge

relays will start.
● E.g., Vidalia bridge lookup enumeration

bug (fixed in Vidalia 0.1.3, 25 May 2008)

48

Data retention
● Remember our threat model: even one hop in

Germany (Europe? US?) may be too many
● How many layers of logging are there? If your

ISP logs, and its ISP logs, ...
● How safe are these logs? Who can access

them?
● Nothing is really enforced in Germany until

2009, so no need to change technical designs
immediately. But that means we need to act!

49

Last thoughts
● Many of the hard research problems are

attacks against all low-latency anonymity
systems. Tor is still the best that we know
of -- other than not communicating.

● People find things because of the openness
and thoroughness of our design, spec, and
code. We'd love to hear from you.

● Pretty much any Tor bug seems to turn into
an anonymity attack.

