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Abstract
Live Tor network experiments are difficult due to Tor’s
distributed nature and the privacy requirements of its
client base. Alternative experimentation approaches,
such as simulation and emulation, must make choices
about how to model various aspects of the Internet and
Tor that are not possible or not desirable to duplicate or
implement directly. This paper methodically models the
Tor network by exploring and justifying every modeling
choice required to produce accurate Tor experimentation
environments. We validate our model using two state-
of-the-art Tor experimentation tools and measurements
from the live Tor network. We find that our model en-
ables experiments that characterize Tor’s load and per-
formance with reasonable accuracy.

1 Introduction
Tor [20] is an anonymizing overlay network consisting
of thousands of volunteer relays that provide forward-
ing services used by hundreds of thousands of clients.
To protect their identity, clients encrypt their messages
multiple times before source-routing them through a cir-
cuit of multiple relays. Each relay decrypts one layer
of each message before forwarding it to the next-hop re-
lay or destination server specified by the client. Without
traffic analysis, the client and server are unlinkable: no
single node on the communication path can link the mes-
sages sent by the client to those received by the server.

Tor is a distributed system containing a handful of au-
thorities that assist in distributing a consensus of trusted
relay information. This directory of relays informs
clients about the stability of and resources provided by
each relay. Clients use this information to select relays
for their circuits: the choice is weighted by the rela-
tive difference in the perceived throughput of each relay
in an attempt to balance network load. Although Tor’s
main purpose is to protect a client’s communication pri-
vacy, it also serves as a tool to resist censorship. Cit-
izens in countries controlled by repressive regimes rely
on Tor to mask their intended communication partners,

thereby circumventing the block that may otherwise oc-
cur at censors’ borders. Although several nations have
attempted to block Tor, its distributed architecture has
thus far proven resilient to long term censorship.

Tor’s popularity, distributed architecture, and privacy
requirements increase the difficulty in experimenting
with new algorithm and protocol designs. New designs
require software updates before testing their network ef-
fects, which both prolongs and complicates the experi-
mental process. Further, since the live network is not
a controlled environment, fluctuations in network condi-
tions may both bias results and make them impossible
to replicate. Finally, experiments that require client data
collection are generally discouraged due to privacy risks.

The disadvantages to live Tor experimentation have
led researchers to explore alternative approaches, in-
cluding utilization of network testbeds such as Planet-
Lab [29], simulation [23,24,28], and emulation [4,5,16].
Each of these live Tor experimentation alternatives must
make choices about how to model the existing network.
A lack of details about and justifications for such choices
obscures the level of faithfulness to the live network and
decreases confidence that the obtained results provide
meaningful information.

We improve the state of cyber security by contributing
a novel and complete model of the Tor network that may
be used for safe and realistic Tor experiments. In Sec-
tion 3, we enumerate, explore, and justify each Tor mod-
eling decision through methodical reasoning, using data
from real Internet measurements where possible. We
provide insight into non-intuitive consequences of alter-
native modeling strategies while precisely specifying and
discussing our modeling techniques.

We validate that our model produces an accurate envi-
ronment whose performance and load are characteristic
of the live Tor network. To this end, we utilize two state-
of-the-art Tor experimentation platforms: Shadow [23]
and ExperimenTor [16]. We describe the tools and dis-
cuss their pros and cons in Section 2, both to show that
our model is applicable in multiple testing environments



and to guide future work in selecting the tool most suit-
able to a given research question. In Section 4, we in-
stantiate our model with both Shadow and Experimen-
Tor and compare results obtained with each tool to data
collected from the live Tor network. We find that both
tools produce reasonable Tor load and performance char-
acteristics using networks of various sizes produced with
our model. We inform the research community about the
lessons we learned in Section 5 while concluding and
discussing future work in Section 6.

The following summarizes this paper’s contributions:
• Justified, precise specifications of techniques used

to create accurate Tor network models
• Validation that our model produces an accurate en-

vironment whose performance and load are charac-
teristic of the live Tor network, with multiple exper-
imentation tools
• The first direct comparison between results obtained

with Shadow [23] and ExperimenTor [16]—two
state-of-the-art Tor experimentation platforms

2 Background and Related Work
While Tor is the most widely used anonymity network to-
day with hundreds of thousands of daily users, Tor is still
an active research network on which researchers work to
improve its performance and security. To that end, prior
Tor research has utilized a wide variety of methodologies
which includes: analytical modeling [18,28] and simula-
tion [24,28] of specific aspects of Tor’s design; relatively
small Tor deployments on PlanetLab [15, 33]; and direct
experimentation [17] and measurement [27] on the live
Tor network.

Analytical modeling, simulations and small-scale Tor
deployments on testbeds such as PlanetLab each make
certain simplifying and potentially unrealistic assump-
tions that often leave many open questions about how
the results obtained might translate to the live Tor net-
work. Direct measurement and experimentation with the
live network are unable to investigate design changes at
scale due to software upgrade delays. Further, such well-
intentioned research might have a negative impact on real
Tor users’ quality of service or privacy [25].1

In an effort to enhance the realism and safety of
Tor experimentation, two designs for whole-Tor network
testbeds, Shadow [23] and ExperimenTor [16], have been
independently developed and made publicly available for
use by the research community. In contrast to prior ap-
proaches to Tor research, these testbeds seek to replicate
in isolation the important dynamics of the live Tor net-
work at or near scale, complete with directory authori-
ties, Tor routers, Tor clients, applications, and servers.
While the details of how these tools model the live Tor

1See Bauer et al. [16] for a survey of prior methods for Tor research.

network are discussed at length in Section 3, we first
overview each tool’s distinct approach.2

Shadow. To produce high fidelity experiments in a
controlled and repeatable manner, Shadow leverages
discrete-event simulation of the network layer and runs
real, unmodified application software within the vir-
tual network topology. Shadow also simulates the ef-
fects of background Internet traffic by introducing non-
deterministic jitter and packet loss on links. Shadow
offers an extensible plug-in framework through which
an investigator can integrate an application or protocol
of her choice into the Shadow experimentation environ-
ment. A plug-in called Scallion for simulating the Tor
network is available. Important advantages of Shadow
are that it can simulate large-scale distributed systems
(such as Tor) on a single well-provisioned machine, re-
sults can be trivially replicated due to its design, and it
can scale to arbitrarily sized networks because it runs in
virtual time. Furthermore, virtual machines are available
for running Shadow in the cloud on Amazon’s EC2. See
Shadow’s webpage for more details [11].
ExperimenTor. Similar to Shadow, ExperimenTor of-
fers the ability to run unmodified Tor software within
an isolated environment to conduct experiments that are
faithful to dynamics of the live Tor network. In contrast
to Shadow’s network simulation approach, Experimen-
Tor is a network emulation-based testbed, built on the
mature Modelnet [34] network emulation platform. Ex-
perimenTor uses one machine to emulate a specified net-
work topology and another machine (or possibly several
machines) to run unmodified software within the virtual
network. Also unlike Shadow, ExperimenTor does not
endeavor to account for the effects of unrelated back-
ground Internet traffic on experiments. While Experi-
menTor cannot easily be run on a single machine, it has
an advantage of using the operating system’s native net-
work stack, rather than a simulation. More details about
ExperimenTor can be found on its webpage [6].

3 Model
Tor experimentation outside of the live network bene-
fits from accurate models of network characteristics and
node behaviors. This section details our approach to
modeling Tor while discussing alternative approaches
and common pitfalls. Our model is not intended to
be a complete set of all characteristics and behaviors
one could model, but rather the subset that we found
most important and most useful. Although tested with
Shadow [23] and ExperimenTor [16], we intend the
model to apply to a broad range of research problems.

2This work describes and uses Shadow version 1.4.0 with Scallion
version 1.3.1, and ExperimenTor as of April 2012. Later versions may
have new features and capabilities not described here.



Figure 1: The vertex and edge properties in our modeled
topology. The topology forms a complete graph.

3.1 Topology
We first consider the structure of our experimental net-
work. Ideally, our network topology would replicate the
Internet architecture, including all autonomous systems
(ASes), core, backbone, and edge routers, and all links
between them. Such a structure would provide the most
accurate view of the Internet to an experimental frame-
work. Unfortunately, the exact structure of the Internet
is unknown and inferring it is an open research problem
(e.g., [32]). Even if the Internet structure were known,
it would be extremely large and too inefficient to repli-
cate for experimental purposes. Therefore, we produce a
small-scale, manageable model of the Internet.

Mapping the Internet topology is a major research area
that has resulted in the development of multiple tools
and techniques [3, 19, 26, 35]. This work utilizes geo-
graphic clustering by country3 to scale the Internet down
to a manageable topology because Tor similarly reports
statistics about its users, allowing for a natural assign-
ment of Tor node properties and placement of Tor nodes
in our topology. Further, our approach produces small
and efficient complete topologies (see Figure 1): we min-
imize the number of topology vertices and edges while
remaining compatible with Tor’s reporting method, and
do not require routing algorithms to send packets through
the network backbone. Finally, geographical clustering
simplifies the process of mapping nodes to vertices, since
any desired location (IP address) can be mapped to a
cluster using a wide variety of GeoIP tools (e.g. those
provided by MaxMind [8]).
Network Vertices. In our clustering approach, we create
a network vertex for each country, Canadian province,
and American state.4 We take this approach, as op-
posed to clustering by Autonomous System (AS), be-
cause geographical clustering most closely resembles the
actual structure of the Internet: end-users and hardware
are physically located in clearly defined geographical re-

3Note that some Tor research questions may require a more detailed
model of the Internet topology, a problem future work should consider.

4We used Tor’s directly-connecting-user country database [12] to
form our list of countries, which we supplemented with states and
provinces from Net Index [9].

gions. ASes, however, typically span multiple geograph-
ical regions. Further, many properties of network ver-
tices and edges directly correspond to their geographi-
cal location, resulting in less variance when aggregating
measurements of such properties.

Each vertex is assigned default upstream bandwidth,
downstream bandwidth, and packet loss properties ob-
tained from the Ookla Net Index dataset [9]. The dataset
provides aggregate statistics collected during bandwidth
speed tests [2] and ping tests [10]. Ookla aggregates mil-
lions of such tests and provides the rolling mean through-
put for each geographic region (vertex in our topology)
over thirty day intervals. The cumulative distributions on
bandwidths are shown in Figure 2a.

Network Edges. Each vertex in our topology is con-
nected to every other vertex, forming a complete graph.
Each of these pairwise connections are represented as a
network edge. We assign each network edge the follow-
ing properties: latency (end-to-end packet delay), jitter
(the variation in packet delay), and packet loss (the frac-
tion of packets that are dropped). Note that full end-to-
end loss rates are computed by combining the loss rates
of the source and destination vertices and the connecting
edge. Due to the lack of accurate loss rate measurements
in the Internet core, our model currently utilizes only ver-
tex loss rates from Ookla [9].

To model edge latency in our topology, we use round
trip times (RTTs) measured by the iPlane [26] latency
estimation service.5 iPlane gathers RTTs from several
vantage points, including PlanetLab nodes and traceroute
servers, on a daily basis [7]. We use RT T

2 to approximate
latency between every iPlane node.6 We then use GeoIP
lookup to assign each iPlane node to a network vertex,
and therefore each estimated latency value corresponds
to a network edge. Since there may not be an iPlane node
corresponding to every network vertex (because there is
not an iPlane node in every country), we create a tem-
porary virtual overlay topology containing only nine “re-
gional” clusters (e.g. US East, US West, EU East, EU
West, etc.) and aggregate our latency estimates on the
corresponding regional overlay edges. Then, we assign
each network edge for which we have no RTT measure-
ments the median latency value from the corresponding
overlay edge. Figure 2b shows the iPlane latency esti-
mates between common regional overlay edges, and con-
firms that an increase in physical distance between nodes
implies an increase in latency. Finally, we approximate
jitter over our network edges as IQR

2 , where IQR is the
edge latency inter-quartile range.

5The traceroutes were collected on 2012-03-28.
6Although Internet paths may be asymmetric, we found RT T

2 a suit-
able approximation of edge latency after aggregating measurements.
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Figure 2: (a) Topology vertex bandwidths from Net Index, and estimated relay bandwidths from published relay documents. (b)
Topology edge latency. (c) Sampling relays for scaled-down Tor experiments. Our sampling algorithm produces the best fit to the
original relay bandwidth distribution by minimizing the area between the CDF curves.

3.2 Hosts

Once we have configured a topology, we next configure
hosts that operate in that topology. In the context of a
Tor network, we are most concerned with Tor relays, Tor
clients, Tor authorities, and Internet web/file servers. Al-
though the live Tor network contains thousands of relays
and hundreds of thousands of clients, it is often the case
that experiments must be scaled down significantly due
to hardware limitations. We now explain our approach to
scaling down the Tor network for each host type.

Tor Relays. Relays are an important part of a Tor net-
work model, as each of them donates bandwidth and pro-
vides the forwarding service upon which the network
is built. Recall that when building circuits, clients se-
lect relays according to weights published in the consen-
sus. These selection-weights direct clients to relays ac-
cording to each relay’s perceived throughput, and have a
dramatic impact on relay and network load and conges-
tion [31]. Therefore when scaling down from the thou-
sands of relays in the Tor consensus to a manageable
number for experiments, it is important that the distri-
bution of selection-weights in the scaled network is as
close as possible to that of the live network. Past work
has sampled uniformly at random from the existing set of
relays [24] when choosing relays for experiments. Un-
fortunately, the distribution that results from randomly
selecting relays may not fit the original selection-weight
distribution well. We now describe an algorithm that pro-
duces the best fit sample of the original distribution while
quantifying its improvement over random selection.

To scale the number of relays down toK ofN , we split
a sorted list ofN relay selection-weights intoK bins and
choose the median weight from each bin. The result-
ing weight distribution best fits that of the original relay
population: any non-median weight value would only in-
crease the distance between the distributions. This ap-
proach is detailed in Algorithm 1. To quantify our algo-
rithm’s effectiveness, we compare it to random selection

Algorithm 1: Sample relay bandwidths to produce a dis-
tribution that best fits that of the original relay population

Input: sorted list L of N relay bandwidths, sample
size K ≤N

Output: sorted list of sampled bandwidths S
1 n← f loor

(N
K
)
;

2 r←K−n;
3 i← 0;
4 for k← 0 to K−1 do
5 j← i+n;
6 if k < r then j← j+1;
7 bin←L.slice(i, j); // range [i, j)
8 S.add(median(bin));
9 i← j

using the difference from the original relay weight dis-
tribution as a metric. This is calculated as the integral of
the absolute value of the difference between the sampled
CDF s(x) and the Tor relay selection-weight CDF f (x):∫

∞

0 | f (x)− s(x) | dx. The result is then normalized. Fig-
ure 2c compares the distribution of this closeness metric
for 1000 samples of K relays using our algorithm and
random sampling. (We found insignificant variance in
the sample distributions when choosing K ∈ [50,1000].)
While our algorithm always produces the best fit result
for each sample (hence the vertical line in Figure 2c),
random sampling produces weight distributions as far as
ten percent from optimal.

We draw two samples of relays from those listed in
the consensus: one for exit relays (discussed below) and
one for non-exit relays. We then consider several relay
properties. First, we assign each relay to the network ver-
tex in our topology corresponding to its geographic loca-
tion (found by GeoIP lookup of the relay’s IP address).
This allows communication between relays while also
resulting in latencies between relays that correlate with
physical distances. Next we compute relay rate limits7

7A relay operator may limit the amount of bandwidth its relay con-



Algorithm 2: Estimate relay upstream and downstream
capacities using data published in the consensus, server de-
scriptors, and extra infos

Input: consensus weights C, max bw bursts B, max
read and write bw historiesR andW

Output: capacity up U and down D
1 for i← 0 to getRelayCount()−1 do
2 if B[i]> 0 then
3 ifR[i]> 0 andW[i]> 0 then
4 ratio← R[i]

W[i] ;
5 if ratio > 1 then
6 U [i]←B[i];
7 D[i]← (B[i] · ratio);

8 else
9 D[i]←B[i];

10 U [i]←
(
B[i] · 1

ratio

)
;

11 else U [i]←D[i]←B[i];
12 else ifR[i]> 0 andW[i]> 0 then
13 U [i]←W[i];
14 D[i]←R[i];
15 else U [i]←D[i]←C[i];

and access link capacities, the most important properties
affecting the resources each relay provides and the ex-
pected client performance in our modeled network. Rate
limits are taken from the public server descriptors [12] of
our sampled relays. Capacities must be estimated.

Since a relay’s ISP access link capacities are not di-
rectly measured or published, we estimate these val-
ues using historical bandwidth measurements published
in server descriptors and extra info documents, and the
weights published in the consensus. The published doc-
uments include: bandwidth weights—values used dur-
ing circuit construction to help distribute client load to
faster relays; observed bandwidth—the smaller of the
maximum sustained input and output over any ten second
interval; and read/write bandwidth histories—the maxi-
mum sustained input and output over any fifteen-minute
interval. We prefer the observed bandwidth as the best
estimate of capacity. Since only the smaller of the input
and output observed bandwidth is published, we use the
read/write histories to infer to which the published value
corresponds, and the ratio of read/write histories to esti-
mate the unpublished observed value. In the absence of
observed bandwidth information, we use read/write his-
tories directly, and otherwise fall back on the bandwidth
weights. A detailed specification is provided in Algo-

sumes by configuring a token bucket rate-limiter: the token bucket size
and refill rate can be configured by setting BandwidthBurst and
BandwidthRate in the configuration file.

rithm 2. The distribution on relay bandwidths computed
using Algorithm 2 is shown in Figure 2a.

Note that a relay’s observed bandwidth is only a good
estimator of capacity when the relay was not limiting its
rate during at least one ten second interval, and the relay
had enough clients to consume its available bandwidth.
Otherwise, the observed bandwidth is an underestimate
of a relay’s true capacity. This is corroborated in Fig-
ure 2a: upstream and downstream estimates are mostly
symmetric due to the reliance on observed Tor bandwidth
and Tor’s circuit design, and the relay capacities appear
far less than the expected upstream and downstream ca-
pacities from Net Index. We plan to explore passive
measurement techniques, such as packet trains [22], to
directly measure relay capacities in future work. Such
measurements would provide a significantly better data
source for modeling capacities than currently available.

The last part of modeling relays is adjusting their Tor
configuration. As mentioned above, we sample relays
that will exit Tor traffic separate from those that won’t.
Both exit and non-exit relays require the ORPort op-
tion to configure it as a relay while exit relays addi-
tionally require a configured ExitPolicy. (Exit poli-
cies may be found in relays’ server descriptors.) Other
notable configurations include TestingTorNetwork
to help with bootstrapping in our test environment, and
DirServer to specify our custom directory authorities.
Tor Authorities. Tor directory authorities are responsi-
ble for creating, signing, and distributing the consensus
document—a list of all available relays and their associ-
ated bandwidth weights. Tor bandwidth authorities mea-
sure the expected performance of each relay and use the
relative measured performance to compute the consensus
weights used by clients for relay selection. In the live
Tor network, the bandwidth measurement functionality
is provided by a set of scripts known as TorFlow [13].

Our model selects the fastest sampled non-exit relay as
the directory authority (all Tor directory authorities are
currently non-exit relays). Since our test network lacks
TorFlow, we must ensure that the bandwidth weights that
appeared in the live network consensus also appear in our
test network consensus. This is done by writing a .v3bw
file with the live network bandwidth weights in the di-
rectory authority’s data directory, as is done in live Tor.
Lacking a valid .v3bw bandwidth file, the authorities
will fall back on relays’ reported observed bandwidth. In
this case, we must remove a software-defined limit8 on
the observed bandwidth to allow relays to report the cor-
rect consensus weight. Note that although clients will
be selecting relays in our test network using the same
weights as the live network, the probability that each re-

8Directory authorities will not trust any self-reported relay band-
width over DEFAULT MAX BELIEVABLE BANDWIDTH, which is set
to a default value of 10 MiB/s.



Table 1: The ten countries with the highest reported Tor con-
necting user counts [12] during January, 2012.

Country % Country %

United States 16.46 Spain 5.08
Iran 12.63 Russia 3.46
Germany 9.99 Republic of Korea 2.66
Italy 6.96 United Kingdom 2.39
France 6.30 Saudi Arabia 2.38

lay is selected necessarily increases (we downsampled
the relays and the sum of the probabilities must equal 1).
Tor Clients. In our model, Tor clients are the main
source of network load, producing all of the exit-bound
traffic routed through Tor while simultaneously serving
to measure network performance. Clients perform syn-
chronous HTTP GET requests to download files through
our modeled Tor network. Clients choose HTTP servers
from which to request each download uniformly at ran-
dom. Since the requests are synchronous, each client will
be responsible for at most one stream through Tor at any
time. Each client measures the time from when it ini-
tiates a connection to the SOCKS application proxy to
the first byte and last byte of the file payload, indicating
network responsiveness and performance.

Our model classifies clients into two broad categories:
web clients and bulk clients. Each web client requests
320 KiB files, the average webpage size according to re-
cent web metrics [30]. After completing a download, a
web client will pause for a time drawn uniformly at ran-
dom from a range of [1,20] seconds before initiating the
next download to simulate the time a user takes to con-
sume the web page content. Each bulk clients requests
5 MiB files without pausing between the completion of
one download and the initiation of the next. Our client
model is based on work characterizing Tor exit traffic by
McCoy et al. [27]. This work found that roughly 60% of
the bytes and 95% of the connections exiting Tor were at-
tributable to HTTP traffic while roughly 40% of the bytes
and 5% of the connections were attributable to BitTor-
rent traffic. Therefore, we use a 19:1 ratio of web to bulk
clients. The total number of clients is dependent on the
number of relays and their capacities (see Section 4).

Each client is assigned a geographical location and the
corresponding network vertex in our topology according
to Tor’s directly connecting user statistics [12,21]. These
statistics specify the country from which clients connect
when directly downloading Tor directory information.
The top ten countries from a recent version of this data
are shown in Table 1. When assigning a client to a ver-
tex, the assignment is weighted by the given percentages.
Each client’s ISP connection upstream and downstream
capacities are taken from the default vertex properties as
measured by Net Index [9] (see Section 3.1).
Internet Servers. In our model, HTTP servers are the
destinations of our client requests and the sources of

Table 2: The ten countries with the highest number of servers
in the Alexa top 1 million data set [1] during January, 2012.

Country % Country %

United States 47.94 France 3.64
Germany 8.65 Russia 3.40
China 4.50 Netherlands 2.86
United Kingdom 4.20 Canada 2.10
Japan 3.73 Italy 1.48

the files downloaded through Tor. In order to attribute
changes in performance to Tor itself while minimizing
effects external to the network, we assign Internet servers
100 MiB/s bandwidth capacities. This high capacity will
prevent our Internet servers from becoming bottlenecks
during our client downloads. The geographic locations
of Internet servers are assigned using the Alexa Top Sites
data set [1]. Since the Alexa ranking may not capture the
usage patterns of Tor users well, we instead produce a
distribution on location of the reported top one million
sites.9 The top ten countries with the most sites in the
Alexa data set are given in Table 2. Our assignment of
server to topology vertex is weighted by this distribution,
similar to our client vertex assignment.

4 Methodology and Experiments
To determine the accuracy of and increase the confidence
in our Tor network model, we instantiate it using two
state-of-the-art Tor experimentation tools: Shadow [23]
and ExperimenTor [16] (see Section 2 for background).
This section compares the performance and load charac-
teristics of the environments produced with each tool to
that of the live Tor network, illustrating the effectiveness
of our modeling strategies from Section 3. We choose
network performance and load because Tor already mea-
sures these characteristics on the live network, allowing
for a direct comparison of results. Further, these metrics
represent the gauges in which clients and relays are gen-
erally interested, and are most useful when developing
new algorithms that improve the state of the network.

We test our model with two different network sizes,
both of which are scaled down versions of the live Tor
network. In our small network, we configure 50 re-
lays and 500 clients that communicate with 50 HTTP
file servers. In our large network, we configure 100 re-
lays and 1000 clients that communicate with 100 HTTP
file servers. The small and large networks are approxi-
mately fifty and twenty-five times smaller than the size
of Tor, respectively. Both Shadow and ExperimenTor
use instantiated versions of our Tor network model10

and are configured to run a vanilla instance of version
0.2.3.13-alpha of the Tor software for ninety virtual min-
utes. Download results are ignored during the first thirty
minutes of each experiment to allow for Tor’s bootstrap-

9We find locations with standard DNS queries and GeoIP lookups.
10The topology files are available on the Shadow website [11].
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(a) 320 KiB clients
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(c) 320 KiB clients
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(d) 5 MiB clients

Figure 3: Performance for live Tor and our small modeled network of 50 relays and 500 clients in Shadow and ExperimenTor.
Time to the first byte of the data payload is shown in (a) and (b), and time to the last byte in (c) and (d), for various download sizes.
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(a) 320 KiB clients
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(b) 5 MiB clients
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(c) 320 KiB clients
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(d) 5 MiB clients

Figure 4: Performance for live Tor and our large modeled network of 100 relays and 1000 clients in Shadow and ExperimenTor.
Time to the first byte of the data payload is shown in (a) and (b), and time to the last byte in (c) and (d), for various download sizes.

ping process. File download timings during the remain-
ing period are utilized as discussed below.

Note that we explored various numbers of clients and
found that a 10:1 client-to-relay ratio in our experiments
resulted in load and network performance that reason-
ably approximated that of the live Tor network [12]. We
stress that this client-to-relay ratio is due to our client
modeling strategies; alternative client behaviors may re-
quire an adjusted ratio to produce the network charac-
teristics that best approximate Tor. Accurately modeling
Tor client behaviors is an open research problem which
future work should consider.

4.1 Network Performance
We compare client performance measured in our test en-
vironments to client performance in Tor during the same
period we are modeling.11 We measure the time to the
first and last byte of the data payload of our 320 KiB
and 5 MiB file downloads as indications of network re-
sponsiveness and throughput. We compare our results
to live Tor network performance measured with torperf
[14], a tool that monitors live Tor network performance
by downloading files of sizes 50 KiB, 1 MiB, and 5 MiB.
Performance for our small and large networks are respec-
tively shown in Figures 3 and 4.

We expect client performance in our test environments
to be similar to that in Tor. In particular, the time-to-first-
byte should be consistent regardless of the size of the file
being downloaded. As can be seen in Figures 3a, 3b,

11This work models Tor as it existed during January, 2012.

4a, and 4b, our model produces accurate time-to-first-
byte performance in both tools, although the tools tend to
lose some accuracy above the eightieth percentile. Under
the time-to-last-byte metric, we expect our 320 KiB web
downloads to complete somewhere between the torperf
50 KiB and 1 MiB downloads, and our 5 MiB download
times to be consistent with torperf. Web download times
are more accurate in ExperimenTor in the large network
(Figure 4c) than the small (Figure 3c), and all downloads
tend to take slightly longer in ExperimenTor than in live
Tor. Shadow approximates web download times reason-
ably well (Figures 3c and 4c), and bulk downloads com-
plete slightly faster in Shadow than in Tor (Figures 3d
and 4d). Overall, we are impressed that our model en-
ables both tools to characterize Tor performance closely,
even with scaled-down Tor networks.

4.2 Network Load
Each relay in Tor tracks byte histories: the number of
bytes read and written over time. We use these statistics
to calculate the throughput of each relay included in our
small and large networks, and directly compare through-
puts from Tor with throughputs from our experimenta-
tion environments. The results are shown in Figure 5.

The aggregate throughput for all the relays we chose
in our small network (Figure 5a) totaled 27.6 MiB/s for
live Tor, 31.1 MiB/s in Shadow, and 33.1 MiB/s in Ex-
perimenTor. In our large network (Figure 5b), the aggre-
gate throughput was 44.8 MiB/s in live Tor, 58.4 MiB/s in
Shadow, and 62.2 MiB/s in ExperimenTor. These results
indicate that our experimental networks were too heav-
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Figure 5: Load in live Tor and (a) our small modeled network of 50 relays and 500 clients, and (b) our large modeled network of
100 relays and 1000 clients. Throughput is indexed by each relay chosen in our model and the sum is shown in the legend. (c) The
distribution on the normalized experimental throughput error from reported live Tor throughput.

ily loaded, and the absolute error increased with the net-
work size. The distribution on the normalized individual
relay throughput error is shown in Figure 5c. The distri-
butions have long tails: the maximum normalized error
was 34.9% for Shadow and 28.6% for ExperimenTor in
the small network, and 23.9% for Shadow and 22.5% for
ExperimenTor in the large network. Although the abso-
lute error increased with the network size, the individ-
ual errors decreased in the larger network. Our anal-
ysis found that most throughput error was attributable
to bootstrapping issues: recently added fast relays were
under-utilized in Tor but fully utilized in our experi-
ments. Despite these issues, over 95% of relays in the
small network and 98% of relays in the large network
had less than 10% throughput error.

5 Lessons Learned
Modeling a distributed system is a complex process.
During this process, we found that it is important to use
real Internet and system measurements to eliminate ar-
bitrary modeling decisions, as this tends to have a sig-
nificant impact on how accurately the experimental envi-
ronment replicates the real distributed system. However,
measurements should not be used until they are fully un-
derstood (what they mean and how they are useful), or
they may harm accuracy.

We also found it important to determine useful metrics
that allow for a comparison between the experimental
platform and the real distributed system being modeled.
Useful metrics and proper comparisons of measurements
increase confidence in the obtained results. Useful met-
rics assist in understanding the strengths and weaknesses
of a model, and help determine if the environment pro-
duced from the model is suitable for the given research.

We discovered that it’s very useful to replicate experi-
ments on multiple experimental platforms. This can help
identify errors or peculiarities caused by a specific tool.
For example, this process allowed us to discover that
packet header overhead on TCP packets without a data

payload were not consuming bandwidth on Shadow’s
virtual network interfaces. Shadow’s accuracy improved
greatly after accounting for TCP packet header overhead
on both data and control packets.

Finally, it is important to understand that Experi-
menTor and Shadow have fundamentally different ap-
proaches to experimentation: Shadow simulates all net-
work properties including jitter and packet loss on links
due to the presence of background Internet traffic. In
contrast, ExperimenTor emulates link properties simply
as a function of the Tor traffic load, ignoring any ef-
fects due to background Internet traffic. As in our exper-
iments, differences between other tools may also con-
tribute to the differences in experimental performance
and load, and should be considered when analyzing com-
parative experiments.

6 Conclusion
This paper explored modeling the distributed Tor net-
work. We provided precise and detailed specifications
of our modeling choices and their effect on the result-
ing experimental environment. We validated our model
by instantiating it in two state-of-the-art Tor experimen-
tation tools: Shadow [23] and ExperimenTor [16]. We
compared network performance and network load from
our experiments to real Tor data and found that our model
leads to environments that characterize the live Tor net-
work well. Finally, we provided insights into the lessons
we learned while replicating our experiments with both
experimentation tools.
Future Work. There are several ways in which our
model could be improved. First, we could increase the
size of the our network by improving the software sup-
port and acquiring the hardware resources necessary for
handling larger networks in the available experimenta-
tion tools. Running at or near scale means we may reduce
experimentation artifacts, such as those created because
relay selection probabilities necessarily change when us-
ing only a subset of the existing relays. Larger networks



will also provide a more realistic experimentation envi-
ronment and more realistic results.

Second, our model may benefit from capacity and link
characteristics gathered directly from Tor relays. This
would give us precise statistics about the specific nodes
we are modeling and reduce our reliance on external
sources of more generic information for links between
relays. One possible approach to capacity measure-
ment involves using packet trains [22], but more work
is needed to determine the efficacy of such techniques in
the context of the Tor network. At the same time, many
research questions may require a more detailed topology
structure than that modeled in this paper. Higher fidelity
of the underlying network topology may be possible by
combining data from iPlane [7] and CAIDA [3].

Third, determining a better client model would further
increase confidence in experimental results. Producing a
more robust client model will likely require the develop-
ment of algorithms for collecting client statistics in a way
that mitigates privacy risks. While this is challenging
since client behaviors are dynamic and hard to capture
in a representative fashion, it would allow us to increase
faithfulness to the live Tor network and its users. Finally,
modeling malicious adversaries and their behaviors may
be of specific interest to future research that analyzes the
security of Tor or its algorithms.
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