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ABSTRACT
Today’s software update systems have little or no defense
against key compromise. As a result, key compromises have
put millions of software update clients at risk. Here we iden-
tify three classes of information whose authenticity and in-
tegrity are critical for secure software updates. Analyzing
existing software update systems with our framework, we
find their ability to communicate this information securely
in the event of a key compromise to be weak or nonexistent.
We also find that the security problems in current software
update systems are compounded by inadequate trust revo-
cation mechanisms. We identify core security principles that
allow software update systems to survive key compromise.
Using these ideas, we design and implement TUF, a software
update framework that increases resilience to key compro-
mise.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection; D.2.0 [Software En-
gineering]: Protection Mechanisms

General Terms
Security, Design

Keywords
Software updates, authentication, delegation, key manage-
ment, key compromise, revocation, threshold signatures
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1. INTRODUCTION
Software update systems span a wide range of uses and

designs. This includes their use as package managers [4,
59, 60], library managers [16, 20, 44,48], and application up-
daters [34, 36]. All of these software update systems play
a critical role in computer security. They must discover,
download, verify, and apply updates when security flaws are
discovered in installed software. Crucial to the security of
this process is that all downloaded files are ensured to be
authentic. Though some systems do not authenticate up-
dates [2,7,11], many do. In practice, authentication in these
systems requires cryptographic signatures. The security of
software update systems therefore relies heavily on the in-
ability of attackers to obtain private keys that are trusted
to provide updates.

Historically, software update systems have been designed
such that the compromise of a single trusted key is fatal.
With a compromised key, attackers who can respond to
client requests can cause clients to install malicious soft-
ware. In many systems, even if the developers learn of a
key compromise, there is no secure means of key revoca-
tion. This risk is not theoretical: popular Linux distribu-
tions with tens of millions of users have suffered panics due
to key compromise [23, 46], weak key generation is a con-
tinuing threat [12, 28, 58], and there are many known PKI
vulnerabilities [30, 53]. Recently, attention has focused on
the possibility of government-compelled certificate issuance,
a tool that governments may use to tamp down on political
dissidents [13, 52]. While that work highlighted the risk of
such attacks to secure web browsing, their threat extends
into software update systems, which commonly rely on PKI
for transport layer security as well as code signing. Having
compromised a key by any of these means, attackers can
impersonate update servers using DNS cache poisoning [19],
BGP prefix hijacking [42], posing as (or compromising) a
legitimate content mirror [11], or any other method of inter-
cepting client requests.

Ideally, software update systems would remain safe even
when some of their keys are under the control of an at-
tacker. This property of survivability—the ability for a
system to function correctly while under attack or partial
compromise—is important for building reliable systems. We
believe a software update system cannot remain secure if
an attacker who can respond to client requests has compro-
mised all its keys. However, with the proper understanding
of software update system vulnerabilities, we find updaters
can be designed such that specific attacks requiring partial



key compromise are less likely to succeed. Additionally, the
severity of many successful attacks can be decreased.
We begin by identifying the information that software

update systems must authenticate in order to perform se-
cure updates. This information is the content of updates,
the availability (timeliness) of updates, and the consistency
of information describing updates. Unfortunately, the keys
that software update systems use to protect this information
are vulnerable to compromise in many ways. We examine
popular software update systems, all of which authenticate
some data, and find no principled approach to securing this
information in the event of key compromise.
We then define a set of design principles that can improve

the resilience of software update systems to key compromise.
We have applied these principles in our design of TUF, an
open source software update framework. TUF is the next
generation of the Thandy [33] design originally developed
for secure updates of Tor [54]. The design of TUF uses re-
sponsibility separation and delegation, multi-signature trust
with threshold signatures and multiple roles, and both im-
plicit and explicit trust revocation. TUF can be integrated
with both new and existing software update systems. We
discuss our experiences integrating TUF with two dissimilar
software update systems: a traditional application updater
and Python’s library management system. Based on our
experiences, we discuss practical implications of our design
and make recommendations for key threshold sizes, meta-
data expiration times, and appropriate use of automated
signing.

Main contributions:

• We draw attention to the danger of relying on sin-
gle signing keys and PKI1 in software update systems.
PKI is exceptionally high-risk in update systems as the
software provider does not control the trust chain. We
look at a variety of update systems and find partial or
complete reliance on PKI in most of these systems.

• We identify three fundamental classes of information
that software update systems must authenticate to en-
sure correct and timely updates. This information is
the content of updates, the availability of updates, and
the correct combination of updates.

• We show how role separation can be used in software
update systems to reduce the impact of key compro-
mise. Central to this separation is the observation that
an individual key’s manner of use and storage affects
its likelihood of compromise. We demonstrate how re-
sponsibilities can be divided between roles whose keys
have different likelihoods of compromise in order to
reduce the overall risk to clients.

• We design and implement a software update system
that uses multiple-signature trust and role separation
without requiring SSL or other protocols that store
keys on public-facing servers.

Paper organization: A threat model is given in Sec-
tion 2. Software updates systems are described along with
their vulnerabilities and information responsibilities in Sec-
tion 3. Threats to key security are discussed in Section 4.

1We use the term PKI to refer to contemporary PKI based
on third-party CAs. Our design includes what is, in fact, a
public key infrastructure. To avoid ambiguity, we will not
refer to it as a PKI.

The security properties of current software update systems
are examined in Section 5. Design principles for securing
software update systems are identified in Section 6. We
describe the design of our framework and analyze its key
compromise survivability in Section 7. We discuss our ex-
periences and make recommendations for balancing security
with usability in Section 8. We look at related work and
conclude in Sections 9 and 10.

2. THREAT MODEL
Our threat model assumes the following:

• Attackers can compromise at least one of a software
update system’s trusted keys.

• Attackers compromising multiple keys may do so at
once or over a period of time.

• Attackers can respond to client requests.

We consider the attacker as successful if they can con-
vince the updater to install (or leave installed) something
other than the most up-to-date version of the software it is
updating. If the attacker is preventing the installation of up-
dates, they want the updater to not realize there is anything
wrong.

We deem the ability for an attacker to have arbitrary files
signed by a key to be functionally equivalent to a key com-
promise. To a software update system, the ability to sign
arbitrary files is indistinguishable from possession of the key.

We assume that the internal processes used by project
administrators to manage their codebase and software are
secure. Though important for overall client security, these
processes are out-of-scope for software update systems.

3. SOFTWARE UPDATE SYSTEMS
Software update systems find, download, and install the

latest versions of software. They usually begin by making
requests to servers that host the updates. The server re-
sponds with information describing available updates and
the update system then decides which updates to download
and install. Often, the servers from which updates are down-
loaded are not owned by the same organization that created
the updates. These third-party repository mirrors may be
provided by volunteers or may be owned by content delivery
networks (CDNs).

Software update systems span a range of purposes. Pack-
age managers such as YUM [60] and APT [4] are responsible
for most of the software installed on an operating system.
Library managers such as Python’s easy install [20] are com-
monly provided with programming environments to install
and update optional libraries. Application updaters are in-
cluded with individual applications such as Firefox so that
the application can update itself without needing, for ex-
ample, a package manager, or manual intervention by the
user.

3.1 Authentication
Software update systems must verify the authenticity of

files they receive. These files may be the actual software up-
dates, may describe available updates, or may provide other
information that the updater uses to make download and
trust decisions. Software update systems that authenticate
none of this information are insecure and exploiting them
has been well studied [2,7].



Information Vulnerability

Content of updates Malicious software
Timeliness of updates Freeze attack
Repository state Metadata inconsistency

Table 1: Information responsibilities in software up-
date systems and the corresponding vulnerabilities
that exist when these responsibilities are compro-
mised.

In this work, we are not concerned with systems that offer
no security. Instead, we focus on systems designed for secu-
rity whose architectures are nevertheless dangerously fragile
with respect to key compromise. Among the systems that
do authenticate the information they receive, the two pri-
mary methods of authentication are transport layer security
and cryptographically signed files.
Many software update systems rely on transport layer se-

curity [34,36]. These systems verify that they are retrieving
trusted files by using an authenticated transport protocol
(such as SSL/TLS), and verifying the public key certificate
of the server from which they retrieve updates. The secu-
rity of these systems is heavily based on the security of an
underlying PKI. Trust is bootstrapped by the client having
a set of trusted root CA certificates.
Other software update systems use signed data [4,59,60].

In these systems, clients know one or more keys that they
trust to provide updates. When files are downloaded, the
signatures on these files are checked.
A few systems use both transport layer security and signed

files [59, 60]. Of these, some rely on PKI-based file signing.
Thus means that despite the use of code signing, clients are
still vulnerable to compromise as a result of PKI problems
such as those we will discuss in Section 4.
It is common for software update systems to directly au-

thenticate only a single metadata file through either a sig-
nature on the file or transport layer security. This metadata
file includes cryptographic hashes of all other available meta-
data and update files. By comparing the hashes of the files
downloaded over insecure channels with those listed in the
initial signed or SSL-transferred metadata, updaters ensure
the authenticity of these other files. This technique is espe-
cially useful to larger projects that rely on SSL, as SSL has a
significant performance impact on servers providing updates
for many clients.

3.2 Information Responsibilities
To address key compromise in software update systems,

we must consider attacks specifically aimed at them. Vari-
ous attacks on software update systems are described in [11].
Here we classify the underlying vulnerabilities and identify
the information that software update systems must authen-
ticate in order to remain secure. These information respon-
sibilities and the related vulnerabilities are listed in Table 1
and described below.

3.2.1 Content of Updates
For an attacker to compromise clients through the update

process, the easiest approach is to provide malicious soft-
ware to a client downloading updates. To protect against
installation of malicious updates, software update systems
must be able to verify that all updates are authentic.

3.2.2 Timeliness of Updates
If an attacker can prevent a software update system from

learning that updates are available, the attacker can also
prevent the installation of security updates. As a result, at-
tackers gain time to exploit known vulnerabilities in software
installed on client systems. We call this a freeze attack.

To prevent freeze attacks, clients must know when updates
are available. Though a client cannot stop an attacker from
preventing updates altogether, a client should be able to
detect when an attacker is replaying responses to the client’s
previous queries for updates. Thus, clients must be able to
authenticate information that indicates the availability of
updates.

3.2.3 Repository State
In a metadata inconsistency attack, a software update sys-

tem is tricked into using a combination of metadata and up-
date files that never existed together on the repository at
the same time. Depending on the design of the software
update system, the result of this attack varies. For exam-
ple, a metadata inconsistency attack may allow an insecure
version of a dependency to be installed [11].

We call the set of files available from a repository at a
given time the repository state. To remain secure against
metadata inconsistency attacks, software update systems
need access to authenticated information that indicates
whether any subset of downloaded files is from the same
repository state.

4. THREATS TO KEY SECURITY
There are many ways signing keys and transport keys can

be compromised or bypassed. Some of these categories of
risk have been considered before in the context of key com-
promise [27].

4.1 PKI Vulnerabilities
Trust based on a chain of single keys is compromised if any

key in the chain is compromised. Thus, the use of traditional
PKI for trusting a key within an update system, whether
that key is for signing files or for transport layer security,
is problematic. For example, a single trusted CA certificate
held by a malicious party puts all clients at risk.

Recently, the risk of rogue CA certificates was shown to be
more than theoretical [53]. As many clients rely on certifi-
cates to indicate the location of a revocation server (OCSP
responders or CRLs), rogue CA certificates may be difficult
to revoke. This risk of rogue CA certificates is in addition
to the inherent danger of compromise of any CA’s private
key.

With PKI, there is also the risk that one of the certificate
authorities improperly issues certificates. A notable case of
a fraudulently issued certificate is the issuing by VeriSign of
a certificate in the name of Microsoft Corporation to an at-
tacker claiming to be a Microsoft employee [15]. Incorrectly
issued certificates are also fundamental to the null prefix at-
tack discovered in 2009 [31]. This attack uses a certificate
whose common name is formatted as the domain to imper-
sonate, followed by a null byte, followed by a domain owned
by the attacker. Many CAs would sign such a certificate and
many SSL implementations would consider only the portion
of the common name before the null byte. As a result, an



attacker could obtain a certificate that would be trusted for
any domain.
Fraudulently issued certificates can also be the result of

compelled certificate creation. In such an attack, a govern-
ment agency compels a CA to issue a certificate in order to
enable the agency to intercept secure communication [52].
Despite the risks of PKI-based authentication, many soft-

ware update systems rely solely on PKI for authenticating
updates. Examples of such systems include Firefox’s built-
in updater [22] as well as Google’s Windows and Mac up-
daters [24,25].

4.2 Key Theft
Private keys can be stolen either by an outsider gaining

unauthorized access to a system storing the key or by an
insider with access to the key.
The more easily accessible a key is, the easier it is to steal.

In the case of transport keys, the private key will often ex-
ist unencrypted on disk and will always exist in memory
unencrypted. If the server software is compromised, a pri-
vate key in the process’s memory will not be safe even when
access control mechanisms such as SELinux are used. Even
without obtaining the private key, an attacker who has com-
promised such a system can impersonate the repository and
reply to requests from software update clients. The com-
promise of web servers is not uncommon. There have been
many remotely exploitable vulnerabilities in web server soft-
ware [3, 26] as well as in SSL communication libraries used
by web servers [35,43].
Even though signing keys are generally maintained more

securely than transport keys, they can still be compromised
if an attacker gains access to an internal server through
vulnerabilities or compromised accounts. Two recent high-
profile compromises of software signing systems are those of
the popular Linux distributions Fedora and Red Hat.
In August 2008, the server that was used to sign official

Fedora software was compromised [23]. This server had on
it a passphrase-protected key. Fedora staff would type the
passphrase on the system when software needed to be signed.
If the attacker was able to obtain the key’s passphrase either
directly (for example, though keystroke logging) or through
brute force, they would have been able to gain control of
any Fedora client that performed an update or new software
installation. Fedora distributed a new key to clients through
an insecure means (using the potentially compromised key
to sign a package to replace the key). Fedora’s website cur-
rently states that they intend to consider better methods for
key migration in the future [21].
Around the same time as the Fedora signing key compro-

mise, Red Hat had one of its systems used for package sign-
ing compromised. The attacker was able to sign multiple
malicious versions of the OpenSSH software with the Red
Hat signing key [46]. Red Hat believes the key itself was not
compromised because they use custom hardware requiring
physical access to the machine in order to obtain the private
key. However, once the malicious software was signed, there
was no secure way to revoke the key or the client’s trust of
the malicious, signed packages.

4.3 Crypto and Implementation Weaknesses
In addition to theft of keys, cryptographic weaknesses also

pose a danger to software update systems. There can be a
degree of control over some of these threats. For example,

implementers of software update systems can choose widely
trusted cryptographic algorithms to lessen the likelihood of
algorithmic weaknesses. Similarly, the ability for an attacker
to derive a private key through brute force methods can be
hampered by using large key sizes.

However, there are areas of cryptographic weaknesses
that these systems have much less control over. One major
problem is that implementation flaws in crypto libraries
can render cryptographic algorithms insecure. Such flaws
even include the vulnerability of SSL keys to side-channel
attacks [9]. Additionally, the discovery of implementation
problems resulting in weak key generation has occurred
multiple times and has affected thousands of actively used
keys [12,28,58]. In these situations, it is often the case that
the private key can be quickly recovered.

5. ANALYSIS OF CURRENT SYSTEMS
In this section, we look at how software update systems

in use today secure the classes of information identified in
Section 3.2. There is a large amount of similarity in the
security properties of these systems, which we summarize in
Table 2. Therefore, we will focus on the general properties
and discuss in more detail the notable differences.

Current systems authenticate the content of updates in
three primary ways: using SSL, signed files, and with Au-
thenticode. Though Authenticode, Microsoft’s form of code
signing, uses signed files, we make a distinction because Au-
thenticode has the security problems of PKI. Whether the
key that signs files is known directly to the client or authen-
ticated via a PKI, all of these systems use a single key’s
signature on signed files. From the standpoint of immediate
danger due to key compromise, Authenticode and SSL are
strictly worse than direct key trust because, as discussed in
Section 4, there are more keys that can be compromised as
well as other equivalent attacks.

Update availability information is generally either authen-
ticated using SSL or not at all. No update systems provide
or encourage methods of ensuring reasonable timeliness of
update information using signed files.

The correctness of the repository state seen by clients af-
fects package managers and library managers more than ap-
plication updaters. Repositories for application updaters
often contain only a small number of files (and sometimes a
single metadata file), whereas package and library managers
typically need to handle hundreds or thousands of packages
at a time. Some package managers do provide repository
state information through SSL or signed metadata. How-
ever, many package managers do not. Also unfortunate is
that none of the programming language library managers we
looked at [16, 20, 44, 48] authenticate repository state infor-
mation or any other aspects of their updates. Some library
managers, however, do have incomplete proposed schemes
for signed packages [49].

Google’s update system for Windows software, Omaha, of-
fers an alternative to SSL for providing timely update avail-
ability information. This alternative cryptographic protocol
is the Client Update Protocol (CUP) [14]. CUP provides
authenticity and freshness for software updates with a sin-
gle request and response over an insecure connection. CUP
is not a replacement for SSL as it does not provide pri-
vacy, client authentication, or prevention of replay of client
requests (it does prevent replay of server responses). The



Update Content Update Timeliness Repository State

yum (Fedora 10) signed unprotected unprotected
yum (Fedora 11) SSL + signed SSL SSL
yum (CentOS) signed unprotected unprotected
yum (Red Hat) SSL + signed SSL SSL + signed
APT (Ubuntu) signed unprotected signed
YaST (OpenSUSE) SSL + signed SSL SSL
YaST (SUSE Ent.) SSL + signed SSL SSL
slackpkg (Slackware) signed unprotected unprotected
Sparkle SSL and/or signed SSL or none SSL and/or signed
Update Engine (Google) SSL SSL SSL
Omaha (Google Update) SSL + Authenticode SSL SSL
Omaha with CUP CUP + Authenticode CUP CUP
Adobe AIR applications SSL + signed SSL SSL + signed
Firefox (Windows) SSL + Authenticode SSL SSL
Firefox (Mac/Linux) SSL SSL SSL
Firefox extensions SSL or signed SSL or none SSL or none

Table 2: Software update systems and the authenticated information they provide.

CUP specification [14] does not address revocation of the
public key that clients trust.

6. DESIGN PRINCIPLES
The software update systems discussed in Section 5 share

many of the same weaknesses. These weaknesses stem from
common design decisions that largely ignore the potential
for key compromise. In this section, we describe methods
by which software update systems can resist and recover
from key compromise. These concepts are not new but their
importance and applicability to software update systems has
not been generally understood. They will guide the design
of our framework in Section 7.

6.1 Responsibility Separation
A software update system can have different roles that are

trusted for different responsibilities. These responsibilities
may or may not overlap. By carefully dividing these respon-
sibilities, we can achieve a higher level of security by limiting
which attacks are enabled when the key for a single role is
compromised. A simple example of responsibility separation
can be seen in the two-role designs that use SSL in conjunc-
tion with a single signing key. In these designs, the signed
data does not provide timeliness information; that is solely
the responsibility of SSL.
In addition to clients trusting completely unrelated roles

for different responsibilities, another way to achieve sepa-
ration of responsibilities is through delegation. That is, a
role can delegate some of its responsibilities to other roles.
Delegation can be performed by providing the client with a
certificate signed by the delegating role that describes which
responsibilities are delegated and to whom.
The division of responsibilities between roles does not by

itself improve key compromise survivability. For example,
if the same keys are used for all roles, there is no benefit.
However, this separation is valuable when different keys are
used as well as when combined with other design principles.

6.2 Multi-signature Trust
One of the most obvious ways to prevent software up-

date systems from being at risk due to key compromise is
to require the signatures of multiple keys. Multi-signature

trust can be achieved in two ways: threshold signatures and
responsibilities shared between roles with separate keys.

A single role can have its resilience to key compromise
increased by using a (t, n) threshold signature scheme. That
is, the signatures of at least t signers are required out of a set
of n potential signers. An attacker who compromises t − 1
keys cannot successfully attack any clients.

Distinct from threshold signatures, which use multiple
keys within the same role, another approach is to require
the signatures of multiple roles. The roles involved in multi-
role trust share a responsibility between them. Sharing a
responsibility is different from delegating a responsibility.
When one role delegates a responsibility to another, there is
no multi-role trust that results, as either role is trusted for
the responsibility without the other role’s signature.

These two multiple-signature approaches, threshold sig-
nature schemes and responsibilities shared between roles,
can be used together. For example, if role A uses thresh-
old (tA, nA), role B uses threshold (tB , nB), and there are
no keys in common between nA and nB , then an attacker
would need to compromise at least (tA, nA) and (tB , nB)
keys in order to compromise any responsibilities that these
roles share.

6.3 Explicit and Implicit Revocation
There are multiple reasons for revoking keys in software

update systems. These range from lost keys, suspected or
known weak keys, suspected or known compromised keys,
and rotation of project members. We divide revocation into
two types: implicit revocation and explicit revocation.

Implicit revocation occurs when trust is revoked automat-
ically when some criteria is met. For example, the signatures
on a file may be considered to be expired after a specific date
or a key may only be trusted to sign information a set num-
ber of times before clients stop trusting the key.

Explicit revocation, on the other hand, requires clients to
be told that they should stop trusting keys they currently
trust. Explicit revocation can be performed by having the
trust-delegating role sign a message indicating that trust
should be removed. Explicit revocation is always useful to
indicate that specific keys should no longer be trusted. It
is important to ensure that explicit revocation mechanisms



Figure 1: Overview of roles and files in TUF when
used with a software update system that does not
perform targets delegation. The value of the release
role increases when there are delegated targets roles
and thus more metadata on the repository.

are not vulnerable to freeze attacks that may prevent clients
from being aware of the revocation.
By combining multiple signatures with reliable revocation

and replacement of keys, the result is a system that is proac-
tive. Such a design offers resistance to long-term attacks
where different keys are compromised over time.

6.4 Minimizing Risk
Key risk is the product of the probability of the key’s com-

promise and the impact of its compromise. When threshold
schemes are used, risk can also be considered in terms of role
risk, the product of the probability of at least (t, n) keys be-
ing compromised and the impact of the role’s compromise.
The same concept of risk extends to responsibilities shared
by multiple roles.
Unfortunately, risk in this context cannot be clearly quan-

tified. The probability of a key’s compromise is difficult to
determine and it is similarly difficult to quantify the im-
pact of various responsibilities under the control of an at-
tacker. What is clear is that we should decrease overall risk
as much as possible. When a responsibility would be very
dangerous in the hands of an attacker, the relevant keys
should be used and stored in a way that reduces the chance
of their compromise. Keys that are stored on systems that
are not network-connected are generally much safer than
those stored on network-connected systems. Similarly, keys
on network-connected systems that are not public-facing
are generally much safer than those stored on public-facing
servers.

7. DESIGN AND ANALYSIS
The security concepts discussed in Section 6 provide ways

to understand and increase key compromise survivability in
updaters. This section describes our application of these
concepts in The Update Framework (TUF). We distinguish
between a full software update system and a software update

framework based on whether updates are installed after be-
ing retrieved. TUF, being a framework, performs the secure
retrieval of updates but leaves installation to the software
update system it is integrated with.

For space reasons, some details of TUF’s design have been
omitted. TUF is the second generation design of Thandy,
the updater originally developed for Tor [54]. Detailed de-
scriptions of both are available in the Thandy spec [32] and
the TUF spec [56].

7.1 Design Overview
We use the following terminology to describe the design

of TUF:
Target files. Target files are the files (updates) that a

software update system ultimately wants to download and
install.

Metadata files. Metadata files are signed files that de-
scribe roles, other metadata files, and target files.

Repositories and mirrors. A repository is a conceptual
source of named metadata and target files. Each repository
has one or more mirrors. These mirrors are the actual hosts
providing the repository’s content.

Roles. There is one root role per repository. There are
multiple roles whose responsibilities are delegated to them
directly or indirectly by the root role. The term top-level
role refers to the root role and any role delegated by the
root role. Each role has a single metadata file that it is
trusted to provide.

7.1.1 Repository Contents

metabase/

root.txt

timestamp.txt

release.txt

targets.txt

targets/foo.txt (optional)
targets/foo/bar.txt (optional)

targetbase/

a.rpm (example target)
x/y.dll (example target)

Table 3: Layout of a repository.

The repository contents consist of metadata files and tar-
get files. Table 3 shows a sample repository layout. The
names of the directories “metabase” and “targetbase” can
vary on each mirror. The content and layout of files under
those directories, however, is the same on all mirrors of a
given repository.

The required metadata files are:

− root.txt: Specifies keys of top-level roles.

− timestamp.txt: Specifies the latest release.txt.

− release.txt: Specifies the latest versions of all meta-
data files other than timestamp.txt.

− targets.txt: Specifies available target files.

These files are discussed in more detail in Section 7.3.

7.1.2 Client Workflow
Here we outline the workflow of a software update system

using TUF to check for and obtain updates. This workflow



shows the steps involved when only the required metadata
files are in use. Whenever an unresolvable problem is en-
countered, the software update system using the framework
must decide how to proceed. The updater may want to show
information about the problem in a GUI, log the problem,
or email an administrator.
Note that all metadata is verified by ensuring the required

threshold of trusted signatures, a valid creation time, a fu-
ture expiration time, and that the file is not older than the
last seen version of the same metadata file. With all files
except timestamp.txt, the client knows and verifies the ex-
pected hashes and length of each file.

1. The software update system instructs TUF to check
for updates.

2. TUF downloads and verifies timestamp.txt.

3. If timestamp.txt indicates that release.txt has
changed, TUF downloads and verifies release.txt.

4. TUF determines which metadata files listed in re-

lease.txt differ from those described in the last re-

lease.txt that TUF has seen. In the case where no
optional metadata files are in use, only root.txt and
targets.txt are listed. If root.txt has changed, the
update process starts over using the new root.txt.

5. TUF provides the software update system with a list
of available files according to targets.txt.

6. The software update system instructs TUF to down-
load a specific target file.

7. TUF downloads and verifies the file and then makes
the file available to the software update system.

8. The software update system installs the update.

7.2 Signed Metadata Format
All metadata files in TUF use canonical JSON [10] for-

mat2 and are enclosed in the signature structure:

{ "signed" : X,

"signatures" : [

{ "keyid" : K,

"method" : M,

"sig" : S }

, ... ]

}

where X is the signed object, K is the identifier of the key
that created the signature, M is the method used to make
the signature, and S is a signature of the canonical encoding
of X. An example key format is:

{ "keytype" : "rsa",

"keyval" : { "e" : E,

"n" : N }

}

The signed data of each file contains a creation timestamp
and an expiration date. These are the CREATIONTIME
and EXPIRES values shown in Table 4.

2The specific file format used is not itself important as long
as the format is sufficiently expressive and the data can be
represented in a canonical form for signing and signature
verification purposes.

7.3 Roles and Responsibilities
We use a root role that is responsible for delegating to

other roles their responsibility for each type of information.
These other top-level roles are the targets role, release role,
and timestamp role as shown in Figure 1.

Root role. The root role is the root of trust for the en-
tire repository. The root role signs the root.txt metadata
file (Table 4). This file indicates which keys are authorized
for each of the top-level roles, including for the root role it-
self. The roles “root”, “release”, “timestamp”, and “targets”
must be specified and each has a list of KEYIDs. The sig-
natures of these keys are trusted to sign on behalf of the
corresponding role. The signature threshold for each role is
the value THRESHOLD. The corresponding public key for
each KEYID is specified in the “keys” object.

The keys belonging to the root role are intended to be
very well protected and used with the least frequency of any
keys in the framework.

Targets role. Through the targets.txt file, the targets
role is responsible for indicating which target files are avail-
able from the repository. More precisely, the targets role
shares the responsibility of providing information about the
content of updates. The two roles it shares this responsibil-
ity with are the release role and the timestamp role. This
sharing is a result of the release and timestamp roles need-
ing to indicate the latest version of targets.txt in their
metadata files (indirectly in the case of the timestamp role),
as shown in Figure 1. Depending on whether the release
and timestamp roles are used in an automated fashion, the
targets role may have essentially full responsibility for the
content of updates. The automated use of roles will be dis-
cussed in Section 8.

In the format of targets.txt shown in Table 4, each key
of the TARGETS object is a TARGETPATH. A TARGET-
PATH is a path that is relative to a mirror’s location of
target files. Each element of HASHES is the name of a hash
algorithm and the corresponding value is the hex encoded
digest of the file’s contents. LENGTH is the size, in bytes,
of the target file. If defined, the information in “custom”
will be made available to the code using the framework; this
optional data can be used to indicate additional information
such as a file’s version number.

The targets role may delegate to other roles the responsi-
bility for providing some or all target files. These delegated
target roles are specified in the “delegations” object. The
target paths that a delegated role is given responsibility to
provide are specified.

Delegated targets roles (optional). If the top-level targets
role performs delegation, the resulting delegated roles can
then provide their own metadata files. If a delegated role is
named foo, then foo’s metadata file is available on the repos-
itory as targets/foo.txt. The format of the metadata files
provided by delegated targets roles is the same as that of
targets.txt. Delegated targets roles may also further dele-
gate. As with targets.txt, the latest versions of metadata
files belonging to delegated targets roles are described in the
release role’s metadata.

Release role. The release role is responsible for ensur-
ing that clients see a consistent repository state. It provides
repository state information by indicating the latest versions
of all metadata files on the repository in release.txt (Ta-
ble 4), which it signs. The only metadata file not listed in



{"_type" : "Root",
"ts" : CREATIONTIME,
"expires" : EXPIRES,
"keys" : {

KEYID : KEY
, ... },

"roles" : {
ROLE : {
"keyids" : [ KEYID, ... ] ,
"threshold" : THRESHOLD }

, ... }}

{"_type" : "Targets",
"ts" : CREATIONTIME,
"expires" : EXPIRES,
"targets" : {

TARGETPATH : {
"length" : LENGTH,
"hashes" : HASHES,
("custom" : { ... }) }

, ... },
("delegations" : {

"keys" : {
KEYID : KEY,
... },

"roles" : {
ROLE : {

"keyids" : [ KEYID, ... ] ,
"threshold" : THRESHOLD,
"paths" : [ PATHPATTERN, ... ] }

, ... }})}

{"_type" : "Timestamp|Release",
"ts" : CREATIONTIME,
"expires" : EXPIRES,
"meta" : {

METAPATH : {
"length" : LENGTH,
"hashes" : HASHES }

, ... }}

root.txt targets.txt timestamp.txt / release.txt

Table 4: Metadata formats. Each is wrapped in the signature structure described in Section 7.2.

release.txt is timestamp.txt, discussed below, which is
always created after release.txt.
Timestamp role. The timestamp role is responsible for

providing information about the timeliness of available
updates. Timeliness information is made available by fre-
quently signing a new timestamp.txt file that has a short
expiration time. This file indicates the latest version of
release.txt. The format of timestamp.txt is the same as
the format of release.txt. As the timestamp role needs
to frequently sign a file, it lends itself to automated usage
with a single key that is potentially kept on a public-facing
server. By placing only this one responsibility in a role
that has a high likelihood of compromise, we minimize the
resulting risk.

7.4 Key Compromise Analysis
We now consider the ability of this design to survive the

compromise of one or more roles. The summary of this anal-
ysis is shown in Table 5. Based on this analysis, we will
discuss recommendations for signature thresholds for these
roles in Section 8.
In the following analysis of key compromise, one can often

consider the timestamp role and possibly the release role as
not being major obstacles for attackers. That is, they do
present obstacles to attackers, but some projects may choose
to use these roles in an automated fashion and store their
keys less securely.
Root role compromise. If less than the required thresh-

old of root keys is compromised, clients are not at any risk.
The compromised root keys can be replaced through a new
root.txt file.
If more than the required threshold of keys belonging to

the root role is compromised, an attacker who can respond
to client requests can compromise clients. An attacker would
sign a new root.txt that lists their own keys as the keys
belonging to the other roles and provide all of their own
signed metadata to clients.

Targets role compromise. If a threshold of targets
role keys are compromised, there is no immediate threat to
clients. The attacker cannot cause clients to install mali-
cious software unless the timestamp and release roles are
also compromised. That is, due to the shared responsibility
between these roles for providing update content, all three
roles need to be compromised.

If less than a threshold of targets role keys are compro-
mised and the compromise is noticed, these keys can be se-
curely and reliably revoked by having the root role sign a
new root.txt file that does not list the compromised keys.
The keys of the targets role can also be regularly changed
using this same method to proactively defend against un-
known key compromises.

Delegated targets role compromise. If delegated tar-
gets roles are used, they have essentially the same risk prop-
erties as the top-level targets role. The differences are that:

• It may be the case that a compromised delegated tar-
gets role is only responsible for a subset of the targets
available from the repository. Thus, the role’s com-
promise may result in only a subset of clients (e.g.
those on a specific operating system) being at risk if
the timestamp and release roles are also compromised.

• In addition to revocation by the delegating role, the
compromised keys can also be indirectly revoked by
any other role in the delegation chain. Indirect revo-
cation occurs when a delegating role has itself been
revoked. As a result, all delegations it performed are
revoked.

Release role compromise. If a threshold of release role
keys is compromised, there is no immediate risk of com-
promise or even of attacks on the consistency of repository
contents. An attacker must additionally compromise the
timestamp role in order to perform metadata inconsistency
attacks. Revocation of compromised keys is done through
the root.txt file.



Role
Compromise

Malicious
Updates

Freeze
Attack

Metadata
Inconsistency
Attack

Timestamp no limited by
Rel., Targ.,
and Root

no

Release no no no
Timestamp
+ Release

no limited by
Targ. and
Root

yes

Targets no no no
Timestamp
+ Targets

no limited
by Rel.,
Targ.*, and
Root

no

Release
+ Targets

no no no

Timestamp
+ Release
+ Targets

yes limited by
Root

yes

Root yes yes yes

Table 5: Vulnerabilities when roles are compromised
in TUF. The duration of freeze attacks is bounded
by the expiration times of metadata signed by un-
compromised roles. *Without the release role com-
promised, the attacker cannot provide their own tar-
gets role metadata.

Timestamp role compromise. The compromise of the
timestamp role allows freeze attacks on clients. Once the
compromise is detected, the duration of freeze attacks is
bounded by the earliest expiration time of any of the meta-
data files. As with the other top-level roles, revocation of
timestamp keys is done through the root.txt file.

8. EXPERIENCE AND DISCUSSION
In this section, we discuss our preliminary experiences

with TUF. We also discuss recommendations and best prac-
tices that balance the security benefits of multiple roles and
keys with the practical needs of organizations. Specifically,
we consider organizations with limited ability to store many
keys securely and independently.

8.1 Integration Experience
We have done prototype integrations of TUF with two

very different software update systems. The first is the
application updater for Seattle [50], an application run-
ning on end-user machines that allows the safe execution
of untrusted code. The second is with PyPI [45] and
easy install [20], the community repository and library
management system for Python.
Seattle’s application updater is quite simple. It needs to

identify all files for which new versions exist as well as files
that did not previously exist, download these files, save them
to the application’s installation directory, and restart any
processes that are affected by the changed files. TUF was
integrated such that once all available files were successfully
downloaded and verified, the existing application updater is
then given access to these files. The rest of the application
updater’s functionality did not need to be modified.
Python’s library management system provides a way for

many mutually distrustful library developers to make their
libraries available to users. Developers upload their libraries

to a single repository, PyPI, and end-users run a library
management and update utility, easy install, to download
and install new and updated libraries from PyPI. There is
currently no security in the update discovery and installation
process.

Our prototype integration [55] with PyPI and easy install
makes heavy use of targets delegation and clearly benefits
from the existence of the release role. In this system, PyPI
owns the root keys and keeps the keys for all top-level roles.
PyPI delegates to each developer a targets role that is only
trusted to provide the individual libraries maintained by
that developer. The developer can provide any version of
these libraries, but is not trusted to provide other libraries.
There are over 8000 libraries on PyPI. Our integration uses a
separate delegated role for each of these libraries. As a result
of the large number of delegated targets roles, the release file
is approximately 1.5MB in size due to listing the hashes and
lengths of each metadata file. The release file changes every
time a developer adds a new version of a library. As a result,
it will be frequently downloaded by clients. We implemented
gzip compression of the release file, which brought its size
down to 460KB. This is similar to the size of the initial meta-
data that the insecure easy install downloads on each run,
which is 446KB. Another option would be to add support
for retrieving deltas (diffs) of large metadata files.

Developers create and sign metadata on their own systems
before uploading this metadata and the packaged libraries
to PyPI. Developers have the option of using thresholds and
delegating further. With respect to PyPI’s developer key
management, we envision a system where developers use a
secure web interface to upload their public keys to PyPI.
PyPI may choose to enforce additional security measures
to ensure requested key changes are legitimate and not the
result of compromised account credentials.

8.2 Recommendations
Number of keys. Given the existence of the root role

and three other required top-level roles in our design, many
keys may need to be managed. It is important for keys to
be stored independently—that is, on separate systems and
encrypted with different passwords. If too many keys need to
be managed by a small organization, it is likely that many
keys would be stored together and thus have the security
properties of a single key.

The first consideration is that the timestamp role poses
little immediate risk if compromised. It will also often be
used in an automated fashion and thus highly vulnerable to
exposure if the system it resides on is compromised. Given
the low risk of just this role’s compromise, the timestamp
role can use a single key. The release role is similar to the
timestamp role in that the immediate risk that results from
compromise is low. Some situations may be different, but
in general, it is likely that the release role gains little from
threshold signatures and thus can use a single key.

The roles that benefit the most from threshold signatures
are the root role and the targets role. The root role is
very important because its compromise immediately puts all
clients at risk. Additionally, once the root role has been com-
promised, its keys cannot be reliably revoked and replaced
without a trusted communication channel. The targets role
should also use threshold signatures for similar but slightly
different reasons. Even though the immediate risk due to
compromise of just the targets role is much less than that of



the root role, the keys for the targets role will be used more
frequently. As a result, the targets role’s keys will be more
susceptible to compromise. Even for small projects, the bur-
den of threshold signatures for these roles does not need to
be high. The threshold can be as little as (t, n) = (2, 2) to
gain some level of resilience to key compromise.
Diversity of keys. Due to the threats of weak key gener-

ation and algorithmic weaknesses discussed in Section 4, the
types of keys as well as the libraries used to generate them
should vary within a software update system. Our current
implementation of TUF only supports RSA keys and only
provides one library with which to generate keys. However,
one can generate RSA keys using other crypto libraries and
use them in TUF.
Automated signing. The timestamp role will always

be used in an automated fashion to frequently resign the
timestamp file. Depending on the project, the release file
may also be signed in an automated fashion. In order to
reduce the likelihood of compromise of keys used for auto-
mated signing, the signing should take place on a system
that is not public-facing. Once signed, the metadata can
then be pushed to a public repository.
Metadata expiration times. All of the metadata in

TUF includes expiration times. The appropriate lengths of
these expiration times depend on the type of metadata file.
For the timestamp file, the expiration time should be short.
How short depends on the specific system. For example, if
repository mirrors synchronize once a day, the timestamp
file will not be able to have an expiration time of less than
one to two days, depending on when the synchronizations
are done. The release file should have an expiration time
not much longer than the period between expected changes
to the targets role’s metadata. Similarly, the targets role’s
metadata should use expiration times on the order of the
expected time until new target files will be made available.
The root role’s metadata, on the other hand, should gener-
ally have a much longer expiration time than any of the other
metadata files. If the root role’s metadata expires too soon,
then clients who had not updated for an extended period of
time will not know whether an attacker is replaying the root
metadata. Another reason to use long expiration times on
the root metadata is that frequent usage of the root keys ex-
poses them to increased potential for compromise. Thus, it
is reasonable for some projects to use a multi-year expiration
time with the root metadata.
It is worth noting that systems which are vulnerable to at-

tacks that modify the system time, such as may result from
insecure communication with a time server, may be vulner-
able to freeze attacks due to inability to detect metadata
expiration.
Use of SSL. Our design avoided reliance on SSL in order

to ensure the design was not dependent on the security of
public-facing servers. However, the use of SSL in conjunc-
tion with our design offers further defense against freeze at-
tacks as well as an additional layer of key security when the
server and PKI are not compromised. One way to gain the
benefits of SSL with minimal overhead is to only transmit
the timestamp file over SSL.

9. RELATED WORK
Since the introduction of the first threshold cryptosys-

tem in 1987 [18], many new threshold systems have been
developed [51]. Often, these schemes have impractical key

setup requirements or assumptions [6]. However, it is trivial
to construct a multi-signature scheme by having the multi-
signature of a message just be a list of signatures [6]. This
scheme is what we use in our design. The advantages of
this approach include the simplicity of implementation and
the safety from rogue-key attacks, which are generally the
result of the key setup process of proposed multi-signature
schemes. One drawback of this simple scheme is that the
signature size grows linearly with the number of signatures.

Like threshold schemes, proxy signature schemes for del-
egating signing abilities have a long history [41, 57] and the
use of rights delegation in computer systems has of course
existed much longer. Our design uses delegation by war-
rant in which signed certificates indicate the public keys to
which specific rights are delegated. This system lends it-
self to the use of ordinary signature schemes rather than
special-purpose proxy signature schemes [29].

The signature scheme we use is forward-secure and has
the advantage of being proactive. Forward-secure signature
schemes, which are key-evolving, need to be able to change
the secret key without having to change the public key [1].
We avoid this complication by using a certificate-based sys-
tem.

Existing approaches to certificate revocation include the
use of semi-trusted mediators (SEMs) [8], certificate revo-
cation lists (CRLs), the Online Certificate Status Protocol
(OCSP) [39], certification revocation trees (CRTs) [17], and
short-term certificates [40] that allow clients to set their own
recency requirements [47]. In our design, we make use of
multiple revocation approaches, including short-term certifi-
cates, to improve revocation against various types of adver-
saries.

Our work is not concerned with detecting key compro-
mise but rather only with maintaining a secure state both
before and after keys are known or suspected to be compro-
mised. There are methods of detecting key compromise [27],
but these generally require signature verification to be done
online.

Our previous work identified major security flaws in Linux
package managers [11]. That work highlighted the ease with
which attackers can become mirrors for popular Linux dis-
tributions and in some cases even force specific clients to
use the attacker’s mirror [37]. Previous work by Bellissimo
looked at the limited use of authenticated data by software
update systems [7]. That work recommended the develop-
ment of a standard for secure updates.

We have focused on designing a security framework that
is applicable to software update systems on any operating
system and for any application. However, some applications
and operating systems can also apply the principle of least
privilege to installed updates. That is, in addition to de-
creasing the likelihood of successful attacks on clients by
being resilient to key compromise, these systems can also
isolate compromises by not giving updates and programs
run from updates more privilege than required. For exam-
ple, web browsers that install unprivileged extensions [5,38]
can keep the rest of the client’s system secure even if an at-
tacker causes a malicious extension update. If the installed
software is isolated from the software update system suffi-
ciently that the attacker cannot interfere with future up-
dates, a future update could return the system to a secure
state. Operating system security mechanisms such as privi-
leged users installing updates for unprivileged users as well



as fine-grained mechanisms such as SELinux can be used for
this purpose.

10. CONCLUSION
Software update systems that do not authenticate updates

have received increased scrutiny in recent years. Due to this
attention, many of these systems have implemented simple
authentication mechanisms that cannot survive key compro-
mise. We feel that software update systems must move to
using the approaches we advocate in order to be resilient
to the many threats to key security. Our open source soft-
ware update framework, TUF, allows both new and existing
systems to benefit from a design that leverages responsibil-
ity separation, multi-signature trust, trust revocation, and
low-risk roles.
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