
Single-hop proxies

• Most popular, easiest to deploy

• Single point of failure (legal, technical)

• Anonymizer, Safeweb, ...

1



A MIX node

• Messages change appearance after decryption

• Each MIX batches and reorders messages

• Messages are all the same length

• Store and forward (slow) to maintain anonymity

sets

2



Free-route MIX networks

• User picks a path through the network

• Goal is to hide message’s path

• Needs dummy traffic (inefficient, poorly understood)

to protect against global adversaries (lots of traffic

may work too?)

• Example: Mixmaster, Mixminion

3



A MIX cascade

• Use multiple nodes to distribute trust: any one

node can provide anonymity.

• Anonymity comes from the more users, not more

nodes.

• Assumes a global adversary

• Dangers: trickle attacks, easy to watch endpoints

• Example: Web MIXes, Java Anon Proxy

4



Crowds

• Plausible deniability for web browsing

• Users forward requests within their crowd

• At each forward, with prob p the request is for-

warded to another member, else it goes to the

webserver.

• webserver doesn’t know who made the request.

• No encryption/mixing: totally vulnerable to global

adversary

5



Zero Knowledge’s Freedom

Network

• Connection-oriented (low latency)

• Paid ISPs to run Freedom nodes

• Tunnelled all traffic (udp, tcp, icmp — everything)

through the Freedom network

• But not enough users to make it viable

6



Onion Routing

• Connection-oriented (low latency)

• Long-term connections between Onion Routers

Link padding between the routers

• Aims for security against traffic analysis, not traffic

confirmation

• Users should run node, or anonymize connection

to first node, for best privacy

7



(Onion routing intro)

8



Some technical problems for

Onion Routing:

9



Convenient/Usable Proxies

• We can use anything that has SOCKS support.

But we must strip identifying data: new proxies?

• Another approach is to intercept all traffic – other-

wise we need to modify applications so they don’t

leak info.

• ...and nobody will use it if we need all these proxies

(not true: p2p systems?)

10



Ideal threat model

• Global passive adversary – can observe everything

• Owns many of the nodes

11



Link padding and topology

• Remember that our goal is to hide the path

• Without link padding, adversary can observe when

new connections start, and where they go.

• n2 link padding is insane, but anything less seems

unsafe.

• Open problem: what’s the right compromise?

12



Timing attacks

• If the adversary owns two nodes on your path, he

can recognize that they’re on the same path

• Works passively (counting and watching packets

and timing) or actively (delaying and batching

packets so they’re optimally recognizable).

• An external active adversary can do this by satu-

rating links or otherwise delaying messages into a

certain profile which is recognizable downstream.

13



Tagging attacks

• Onion routing uses a stream cipher to encrypt the

data stream going in each direction.

• An adversary owning a node – or a link! – can flip

a byte in the data stream and look for an

anomalous byte at the exit point (say, when it talks

to a webserver).

• This sort of thing is generally solved by including

a hash, but it’s more complex than that.

14



Long-term intersection attacks

• The fact that not all users are sending messages

all the time leaks information.

• By observing these patterns over time, we can learn

more and more confidently who is sending mail, to

whom, when, etc.

• Major unsolved problem in anonymity systems.

15



More realistic threat model

• We must retreat to protecting against traffic

analysis, not traffic confirmation.

• Reasonable threat model still an open problem too.

16



Oh yeah, and I wrote some

Onion Routing code

• It’s GPLed, but the Navy is sitting on it. Stay

tuned.

17



(Short break)

Next: Anonymity is hard for economic/social reasons

too

18



abuse



Anonymity is hard for

economic/social reasons too

• Anonymity requires inefficiencies in computation,

bandwidth, storage

• Unlike encryption, it’s not enough for just one

person to want anonymity — the infrastructure

must participate

19



Hide users with users

• Anonymity systems use messages to hide messages

(the more noise, the more anonymous something

in that noise is)

• Senders are consumers of anonymity, and providers

of the cover traffic that creates anonymity for oth-

ers

• Users might be better off on crowded systems,

even if those systems have weaker anonymity de-

signs
20



More users is good

• High traffic ⇒ better performance

• Better performance ⇒ high traffic

• Attracts more users: faster and more anonymous

21



But trust bottlenecks can

break everything

• Nodes with more traffic must be more trusted

• Adversary who wants more traffic should provide

good service

• (and knock down other good providers)

• Performance and efficiency metrics cannot

distinguish bad guys from good guys

22



Strong anonymity requires

distributed trust

• An anonymity system can’t be just for one entity

• (even a large corporation or government)

• You must carry traffic for others to protect yourself

• But those others don’t want to trust their traffic

to just one entity either

23



Can we fund it by offering

service for money?

• Freedom taught us that end-users won’t pay enough

for strong anonymity

• (Ok, ok, it’s more complicated than that.)

24



Can we get volunteers to run

nodes?

• Liability, especially for exit nodes

• Having lots of nodes might work, but making an

example of a few well-chosen nodes can scare

everybody

• We can allow nodes to set individual exit policies

• Remains an open problem

25



Pseudospoofing: volunteers

are a danger too

• Are half your nodes run by a single bad guy?

• Global PKI to ensure unique identities? No.

• Decentralized trust flow algorithms? Not yet.

• Still a major open problem for dynamic

decentralized anonymity systems

26



Need to manage incentives

• Users have incentive to run a node, to get more

anonymity. That’s a good start.

• Dummy traffic can help maintain anonymity – but

why should others send dummy traffic to help your

anonymity?

• If anonymity for all requires each user doing similar

things, how do we deal with users who don’t want

as much anonymity?

27



Customization and preferential

service are risky (1)

• It’s tempting to let users choose security and

robustness parameters

• Eg, how many replicas of my file should I create?

or how many pieces should I break my file into?

• But a file replicated many times stands out.

28



Customization and preferential

service are risky (2)

• We’d like to let clients customize to barter better,

e.g. in systems like Mojonation

• We’d like to let users pay (or pay more) for better

service or preferential treatment

• But the hordes in the coach seats are better off

anonymity-wise than those in first class.

29



Conclusion 1: we’re screwed

• Usability is a security objective: anonymity

systems are nothing without users.

• It’s critical that we integrate privacy into the

systems we use to interact.

• But it’s hard enough to build a killer app.

It’s going to be really really hard to solve all the

factors at once.

30



Conclusion 2: more research

remains

• Our current directions aren’t going to work, from

an incentive and usability perspective. We need to

rethink.

31



Synchronous systems

• Each message has a deadline by which the node

must pass it on

• Length of paths is fixed, paths might even be public

• Anonymity is now based on size of batch at widest

point, even for free-route systems

• Improves flooding/trickle attacks

• But harder to synchronize, especially for low-latency

systems

32



Privacy Enhancing

Technologies workshop

March 26-28, 2003

Dresden, Germany

http://petworkshop.org/

33


