
Unobservable Surfing on the World Wide Web: Is
Private Information Retrieval an alternative to the MIX

based Approach?

Dogan Kesdogan1, Mark Borning1, Michael Schmeink2

1 Lehrstuhl für Informatik IV, RWTH Aachen,
{kesdogan, borning}@informatik.rwth-aachen.de

2 Lehr- und Forschungsg. Stochastik, RWTH Aachen,
schmeink@stochastik.rwth-aachen.de

Abstract. The technique Private Information Retrieval (PIR) perfectly protects
a user’s access pattern to a database. An attacker cannot observe (or determine)
which data element is requested by a user and so cannot deduce the interest of
the user. We discuss the application of PIR on the World Wide Web and com-
pare it to the MIX approach. We demonstrate particularly that in this context the
method does not provide perfect security, and we give a mathematical model for
the amount of information an attacker could obtain. We provide an extension of
the method under which perfect security can still be achieved.

1 Introduction

The importance of the Internet continues to grow. Today, any user can find informa-
tion about nearly any topic of interest. With the increasing use of the Internet, interest
in collecting information about user behavior is also increasing. For example, an
Internet bookstore would like to deduce the genre that a user reads, so that it can sug-
gest other books of this genre to promote sales. This is of course a minor example; but
if one were given all the collected information about a user in the WWW, one could
characterize the user and his behavior in great detail. This is the real problem of pri-
vacy, as users may object to being profiled so specifically. Therefore, the user may
want to protect his interest-data. In general the protection of interest-data can be done
in two ways:

1. Indirect: A number of users (n > 1) forms a so-called anonymity group and re-
quests the interest-data using an anonymity protocol like e.g. a MIX- or DC-
network [7, 8, 24]. Although the server is able to identify the requested interest-
data, it cannot assign this data to a specific user.

2. Direct: The user requests the interest-data and additional redundant data.
Therefore, the interest-data is hidden in the overall data stream. An efficient
technique for this purpose has been suggested by two different groups (see [9,
11]).

All work we know on privacy-enhancement in the WWW environment focuses on
the first method, i.e. using intermediary stations like MIXes [5, 14, 27, 25, etc.]. In
this paper we investigate the second approach, using Private Information Retrieval
(PIR), and compare our results. Our main reasons for choosing PIR include:

- Security: PIR provides perfect security (the technique itself is mostly comparable
to the technique of DC-networks) and the method of previous work provide at
most probabilistic security [23].

- Trust model (resp. attacker model): The MIX technique assumes that neither all of
the people using the anonymity technique ((n-1)-Attack1) nor all of the MIXes is
use are corrupt. PIR just assumes that the servers in use are not all corrupt2.

Of course, a direct comparison of PIR and MIX is not possible. PIR provides only a
“reading” function, while MIXes can both send (write) and receive (read) messages.
Therefore, we will only compare the reading function of the MIX with PIR. If we
wanted to both functions we would have to combine techniques.

Our work also differs from the classical PIR approach. To date, all works about
PIR consider unstructured data (“flat” data) [1, 2, 3, 4, 6, 9, 10, 11, 13, 22, 30]. In our
work, we investigate the application of PIR to the WWW environment, where the data
structure can be modeled as a graph (structured data).

Y ⊕ Z

X ⊕ Y

Z

X ⊕ 0 ⊕ 0 = X

⊕

AV 1
=(X,Y)

AV 2=(Y,Z)

AV
3=(Z)

Wants to read X

X Y
Z

X Y
Z

X Y
Z

X Y
Z

X Y
Z

X Y
Z

X ⊕ Y

Y ⊕ Z

Z

X Y
Z

X Y
Z

X Y
Z

X Y
Z

X Y
Z

X Y
Z

1 2 3

Fig. 1. Basic concept of Private Information Retrieval and message service [9, 11].

In chapter 2 we briefly describe the PIR concept. Chapter 3 discusses the problems
of applying PIR to the WWW. In chapter 4 we extend PIR for hierarchical data struc-
tures. Chapter 5 discusses network architecture for Web-PIR. Finally, chapter 6 con-
cludes this work.

2 Private Information Retrieval (PIR)

Private Information Retrieval [9] also known as message service [11] assures that an
unbounded attacker is not able to discover the information that a user has requested
(perfect security). The goal is to read exactly one datum that is stored in a memory

1 We do not know if there is a technique providing security against the (n – 1)-Attack (see also

[18, 26]).
2 If perfect security is not envisaged then PIR does not need to trust the server [3, 6, 20].

cell of a server. To protect the privacy of the user, PIR accesses not just the single
memory cell, several memory cells on several replicated servers. If not all of servers
are corrupt then the method provides perfect security. The method consists of three
steps:

1. The client generates mostly random vectors containing “0” and “1” and sends
them end-to-end-encrypted to the appropriate servers.

2. All servers read the requested cells and superpose (XOR addition) them to
one cell and send them end-to-end-encrypted to the user.

3. The user superposes all the received cells to one cell.

Figure 1 describes the idea of the method. If a customer wants to read a data item
and if there are k PIR servers, he creates k – 1 random vectors. He XORs them to form
the kth vector. In the kth vector, he flips the bit representing the desired data item. The
customer sends one of the vectors to each server. Each server retrieves the data items
corresponding to 1’s in its vector, and XORs them to create one datum. The result of
the XOR sum is returned to the customer who XORs all the results and obtains the
requested data item.

Since the publication of the basic method, several groups have investigated this
technique and extended it, e.g. the efficiency of the method has been increased (see [1,
2, 4, 10, 13, 22, 30]). In our work we will not review these extensions, since they all
have the same problems with structured data. Thus, the presented problem and the
suggested solution can be combined with the other improvements.

3 Lessons Learned: PIR and the World Wide Web

The data structure of the Web can be modeled as a graph [19]. In the next chapter we
present an attack using the knowledge of the Web link structure. The attack is success-
ful even though each individual page request the PIR servers is perfectly secure.

3.1 Assumptions

Using PIR the number of requests from a particular user is still observable. The at-
tacker knows the number of links that connect one page to another, and therefore the
minimum number of requests a user must make to travel that path. In this section we
will discuss how to combine these two pieces of knowledge to uncover the users’
interest.

For the sake of simplicity we assume the following features:

1) A particular WWW-Page will be requested only once by a user.

2) A user will request a page by mistake only from the root level, i.e. he will not
mistakenly follow a path for more than one step.

One may argue that the assumptions are not general enough and therefore are not
fulfilled in the most cases. However, a single example of insecurity is enough to show
that PIR does not provide perfect security. In fact, these three assumption may occur
often than one may believe:

• When using PIR, it is desirable that all users use their local cache, since the re-
quest cost is quite high (Feature 1).

• If a user is not familiar with a Web site, then he may surf until he finds some
interesting path (Feature 2).

We believe that these assumptions are reasonable for the designer of a privacy ser-
vice.

3.2 Simple Deterministic Attack

In the considered application environment it is clearer to speak of a user session rather
than of visiting an abstract graph or requesting distinct pages of a Web. A user session
can be seen as a process (function of time) starting from a starting node of a Web
graph and reaching an arbitrary node.

1 A

2

3

Fig. 2. Simple Web structure.

If the assumptions (1) and (2) hold, than we claim that PIR is not perfectly secure
for Web browsing. Consider this example: A user requests three page from a site with
the link structure as shown in Figure 2. After the first request the attacker knows that
either page “1” or page “A” was requested, i.e. one element of the set {1, A}. The
attacker distinguish further at this time. After the second request, however, the at-
tacker knows that the user has requested Page “1” because:

- with the first request the user requested “A” and now “1”, because the first request
was mistaken; or

- with the first request the user requested “1” and now “A because the first request
was mistaken; or

- with the first request the user requested “1” and now “2”, thus a path has been cho-
sen.

After the third request the attacker knows3 that the user has requested Page “1” and
Page “2”, and by assumption (2) now knows the user’s interest.

The example shows that a technique providing perfect protection by reading un-
structured data items does not automatically lead to a technique providing perfect
protection in general. In the following section generalize this result and give a mathe-
matical model for the attacker’s information gain.

3.3 Mathematical Model for the information gain

A hierarchical data structure is a set of data elements V := {S1, ..., Sn} combined with a
set E of links between the data elements of V. L0⊆ V is defined as the set of starting
elements. Additionally, we assume that the edges are associated with transition prob-
abilities. Such probabilities can be obtained by analyzing the hitlogs of a site (see
[19]).

Following [29, 23] we call a request perfectly unobservable, if an attacker is not
able to gain any information about which page is requested by observing the session.
We assume that the attacker still can observe the number of requests. Thus the
mathematical model follows the deterministic model (above example).

We give two models here, one for the information gained by observing one session
and one for that gained observing several sessions. This distinction is useful, particu-
larly because information can be gained by observing several sessions. Such informa-
tion can be used as a general basis for a time-frequency analysis.

Single-Session Model
Using the above-mentioned transition probabilities we can define a probability distri-
bution on the set M of all possible paths that a user can take. Let g: M → Nat4: m�
g(m) = lm describe the length of a path m. The random variable M denotes the path m
in M explored by the current user. Let L be a random variable describing the length of
the path chosen by the user. Thus, it holds that L=g(M). Furthermore, let Al = {m | m ∈
M, g(m) = l} be the set of all paths with length l. Any opponent can count the number
of accesses, and thus the length of a user's path. The ideal case would be that P(M = m
| L = l) = P(M = m) holds for all m in M.

Unfortunately, the attacker can rule out any path with a length different from the
one observed. Thus,

() ()()
()

()()
()

() () ()


 =∈=

=

∈
==

=
=

==
===

else

lmgifAMPmMP

AMP

lMgmMP

lMgP

lMgmMP
lLmMP

l

l

,0

,

,

)(

,

3 Algorithm: Write all possibilities in separate sets and take the intersection of all sets.
4 Nat ≡ natural number

Let H(M) denote the uncertainty measure of M and H(M L) the conditional uncer-
tainty of M given L. We are interested in the information conveyed about M by L.
Since L is totally dependent on M and g is a function of M, we obtain

() ()
()()

).(

)()()(

,)()(

),()()()(,

LH

MHLHMH

MgMHLHMH

LMHLHMHLMHMHLMI

=
−+=
−+=

−+=−=

With a suitable choice for the logarithmic base used in the uncertainty measure,
it holds that 0 ≤ H(L) ≤ 1, where 0 denotes zero information and 1 maximum in-
formation conveyed, respectively. Thus, H(L) is a measure for the mean gain in in-
formation observed during one user session. To calculate H(L) , we just need the
probability distribution of L, given by: () ∑

∈
===

lAm

mMPlLP)(.

Multiple-Session Model
If users are not anonymous and reveal their IP address, then opponents can gain in-
formation not only during one user session but also by observing a sequence of ses-
sions of a single user.

For example, we can assume that the attacker can distinguish reasonable and unrea-
sonable paths, and that a user will not choose unreasonable paths repeatedly. More
generally, let (M1,…, Mn) be a random vector denoting the paths chosen by a user over
n sessions. An opponent will observe a random vector of path lengths (L1, …, Ln) =
(g(M1), …, g(Mn)).

Similarly to the one-dimensional case, the information conveyed about (M1,…, Mn)
by (L1,...,Ln) can be simplified to:

() ()() () ()
() () () ()()
() () () ()()
() () () () ()()()
() () ()
()n

nnn

nnnn

nnnn

nnnn

nnnnn

LLH

MMHLLHMMH

MgMgMMHLLHMMH

MMgMMHLLHMMH

LLMMHLLHMMH

LLMMHMMHLLMMI

�

���

����

����

����

�����

,

,,,

,,,,,

,,,,,

,,,,,

,,,,,,

1

111

1111

1
*

111

1111

11111

=
−+=
−+=
−+=
−+=

−=

Again, H(L1,...,Ln) is a measure for the mean gain in information observed during a
sequence of n sessions. Admittedly, the estimation of the probability distributions of
(M1,…, Mn) and (L1,...,Ln), respectively, would lead to some practical problems.

3.4 Resulting Consequences for PIR

The direct application of PIR on structured data is unhelpful for security and for per-
formance Normally, PIR requests data among the whole data space. Thus, in average,

50% of the whole database is requested in each random vector. But, if the assumed
terms in chapter 3.1 are true, the attacker can observe the request hierarchy and ex-
clude some of the requested pages as irrelevant because they are unrelated. Thus, there
is no security gain in building a random vector over the whole data set. It is much
more effective from the performance point of view (without losing any security
strength) to build the vector explicitly over the particular hierarchy.

We can conclude that applying PIR on structured data reduces the anonymity set
(the subset of the entire data space which the attacker must consider as possible alter-
natives) with the following consequences:

- To provide perfect security it has to be ensured that in each hierarchy level
the size of the anonymity set is greater then 1, i.e. the Web graph must be re-
structured.

- From the performance point of view the random vectors should be limited to
the elements of the anonymity set belonging to the hierarchy level.

4 Extensions to PIR

As described in the last section, accessing web pages in the WWW can be viewed as a
user session on a hierarchical data structure. It was shown that an observer is able to
determine the number of accesses, i.e. the length of the user session. If he also knows
the data structure, the observer is able to exclude data items that are not reachable in
this number of accesses. IN this section, we will first a method for creating hierarchy
layers. Then we will describe a method to efficiently load data items into any hierar-
chy layer. The latter method is called hierarchical blinded read.

4.1 Creation of hierarchy layers

In section 3.1, we stated two assumptions defining the access to simple web structures.
Within these requirements, the creation of hierarchy layers is more difficult, because a
user could request (n – 1) incorrect items if there are n starting items. Therefore, the
hierarchy layers are enlarged as shown in the example in section 3.1.

In Fig. 3, there are four hierarchy layers. To determine these layers, we partition the
web graph into three sets L0 := {1, 2}, L1 := {3, 4, 5, 6} and L2 := {7, 8, 9, 10, 11}.

1 2

3 4 5 6

8 9 10 117
Fig. 3. Example of a web graph.

The first hierarchy layer will be the set L0, because a user is only able to access

items of this set. The second layer will be L0 ∪ L1: The user may have incorrectly
accessed an item of the set L0 and is now accessing the other item; or the user has
accessed an item of the set L0 and is now accessing an item of the set L1. The third
layer will be L1 ∪ L2, because the user has either accessed an item of the set L1 in the
last step and is now accessing an item of the set L2, or he has accessed an item of the
set L0 and is now accessing an item of the set L1. The remaining hierarchy layer is the
set L2. An example of a three-step-path is the sequence (1, 4, 10); a four-step-path is
the sequence (1, 2, 5, 9).

In general terms: Let there be a hierarchical data structure with levels L0, …, Lk ;
and let e ∈ Li if e is reachable over a path of length i from the starting set. If |L0| = n,

then a hierarchy layer Ai, i = 1, …, k + n – 1, is defined as �
i

nij
ji LALA

)1(
00 :,:

−−=
==

For j < 0 and j > k, let Lj = ∅ . Therefore, a sufficient condition for perfect secrecy
is |Ai| > 1.

With the creation of hierarchy layers, we are able to define an algorithm to access
the layers. To identify an item in a layer, the identifiers of the items are lexicographi-
cally ordered and numbered consecutively. For example, the Uniform Resource Identi-
fier (URI) is the item’s identifier in a given web structure. The URIs can be arranged
in a lexicographical order.

4.2 Hierarchical Blinded Read

Having introduced a method to create hierarchy layers in hierarchical data structures
that respect the requirements of section 3, we will define an algorithm in this section
that realizes a blinded read access to these hierarchy layers. The algorithm is called
hierarchical blinded read (HBR). The HBR algorithm is divided into two parts, the
client algorithm and the server algorithm. The most important change is the introduc-
tion of a new parameter into the original algorithm, the hierarchy layer.

On the client site, the algorithm takes as input the layer l of the target item and off-
set o of the that item in its layer. The output is the item itself. The parameter l is also

needed on the server, so the client has to send this parameter. Therefore, we extend the
request vector by appending the layer l.

Let ni = |Li| be the number of items in hierarchy layer Li, k the number of servers, l
the queried hierarchy layer, and o the offset of the target item in this layer. To simplify
the calculation, we will not use binary vectors. Instead, we represent the binary vector
as a natural number, where the highest order bit represents the item ni and the lowest
order bit represents the item 1 of the hierarchy layer Li. In Fig. 3 , the number 1 (=20)
represents web page “1” of layer 2, and the number 16 (= 24) represents web page “5”
of the same layer.

The client algorithm has two phases, the request phase and the receive phase. In
Fig. 4, the request phase of the client algorithm is shown. First, the client creates the
random request vectors and randomly chooses two servers. Server y receives the XOR
sum, and server w receive that value with the flipped bit representing the user’s actual
request. At the transmission, two function are used. CreatePacket creates an encrypted
packet p that contains the request value and the hierarchy layer l. SendPacket transmits
packet p to server i.

The receiving phase (Fig. 5) uses three additional functions. ReceivePacket gets a
packet and stores it in r. ExtractServer gets the server’s identification number from the
response r, and ExtractData gets the responded data from r. Vector br is used to check
whether all responses are received, and, in addition, br can be used to check if re-
sponses are sent more than once.

Input: k - number of servers,
 l - hierarchy layer,
 n - items in hierarchy layer,
 o - offset of wanted item in hierarchy layer

y := random(k)
w := random(k)
x := 0y

For i = 0 to k-1

For i = 0 to k-1

If i y≠
x[i] := random(2)
x[y] := x[y] x[i]

n

⊕
x[w] := x[w] 2o-1⊕

p := CreatePacket(l,x[i])
SendPacket(i,p)

Fig. 4. Request phase of the client algorithm.

The client algorithm is almost the same as the original blinded read in [11] . The
change in the request phase is the introduction of the hierarchy layer, because the layer
is important in creating the request vectors and has to be transmitted to the server. In
the receiving phase, the vector br prevents any server from sending multiple re-
sponses.

Input: k - number of server

d := 0

While br (1, ..., 1)≠
ReceivePacket(r)
s := ExtractServer(r)
e := ExtractData(r)
If br[s] = 0

d := d e
br[s] := 1

⊕

return d

For i = 0 to k-1
br[i] := 0

Fig. 5. Receive phase of the client algorithm.

If a server receives a query, he loads the corresponding items, creates their XOR
sum, and sends it as a response packet to the client. Additionally, the response packet
contains the unique identification number of the server.

The server algorithm (Fig. 6) uses some additional functions. ReceivePacket waits
for a new packet and stores it in p; ExtractLayer gets the hierarchy layer l from the
packet p; ExtractRequest gets the request value x from p; and GetLayerSize deter-
mines the layer’s number of items n. After that, the corresponding items are loaded,
i.e. it is checked what bits are set in the request value. After creating the XOR sum,
CreatePacket is used to create the response packet and SendResponse transmits it to
the client.

p := ReceivePacket
l := ExtractLayer(p)
x := ExtractRequest(p)
n := GetLayerSize(l)

For i = 1 to n
If (x AND 2) 0i-1 ≠

e := e d[l,i]⊕

e := 0

r := CreatePacket(s,e)
SendResponse(r)

Input: s - Identification number of the server

Fig. 6. Server algorithm.

The server algorithm differs from the original algorithm in [11], because the items
are accessed differently, requiring the server to get the hierarchy layer with a request.
Furthermore, the server transmits a unique identification number, because the client
has to address the responses to the various servers.

Command Vector xy w

y := random(3)

w := random(3)

x := 0y

For i = 0 to 2.
 If i = y, then
 x := random (32)

 x := x
i

y y ⊕ xy

x :=x 16w w ⊕

2

2

2

2

2
2

2

? ?

?

?

?

1

1

1

1
1

1

(?,?,?)

(?,?,?)

(?,?,0)

(25,?,25)

(25,53,44)
(25,53,44)

(25,37,44)

i

0
1
2

Fig. 7. Request phase of the client

Fig. 7 shows an example execution of the request phase. Web page “5” of the Fig.
is requested, i.e. the input for the algorithm is l = 2, o = 5. There are k = 3 servers and
the number of pages in the hierarchy layer 2 is n2 = 6. In the loop, only the result of
every run is listed. Furthermore, the request values x1, x2 and x3 are presented as a
vector of length 3.

Fig. 8 shows the processing of an access at the first server. The server gets a request
vector containing l = 2 and x = 25. The binary representation of x is 11001, i.e. the
server has to load the pages “1”, “4” and “5”. The server creates the XOR sum of
them, creates a response packet containing the sum and his identification number, and
transmits the packet to the client.

In Fig. 9, the loading process of page “5” is shown. The client generates three re-
quests and transmits them to the servers. The servers access their data repository to
load the requested pages, create the XOR sum, and transmit the resulting items. The
client combines the responses using the XOR function and gets the target page “5”.

1

1

2

3 4

4

5

5

6

8 9 10 117

Load pages 1, 4 and 5

1
1451

2 25

Fig. 8. Handling of on access at the server.

1

1

1

1

1

2

2

2

3

3

3

3

3

4
4

4

4
4

5

5

5

5

5

6

6

6

6

6

8

8

8

9

9

9

10

10

10

11

11

11

7

7

7

2

2

2

25

44

37

Load1, 4 und 5

Load 1, 3 und 6

Load 3, 4 und 6

1451

2

3

1

2

3

136

346

Fig. 9. Loading of a page from hierarchy layer 2.

4.3 Remarks

The HBR algorithm requires an additional parameter as input, the hierarchy layer. On
the other hand, the HBR algorithm could calculate this parameter itself. Moreover, the
parameter need not be given at all: If the server is able to identify a client, it can de-
termine the number of accesses by this client and calculate the hierarchy layer itself.
The administration of such an approach is very high, however, because the server
would have to store the number of accesses of any identified client in an interval.
Therefore, the interval has to be specified, so exactly one user session will be in it.
Furthermore, the number of clients could be very large, and all of them would have to
be stored. If we calculate the hierarchy layer in the client’s HBR algorithm, we have to
determine the interval of a user session, too. For these reasons, we have chosen an
implementation in which the user himself determines of the hierarchy layer.

5 Blinded Read Networks

Loading of a data item using blinded read requires some independent servers. All
servers form the so-called Blinded Read Network. A client has to access all servers to
receive a data item. In the previous sections, we described the client and server inter-
action. In this section, we will describe an architecture that could be used for the
blinded read.

5.1 Closed Architecture

The closed architecture is almost the same as the static approach of the original
blinded read. Every server contains all data items that can be accessed over the
blinded read network. An application area of the closed architecture is the World Wide
Web. The application area covers databases that contain slowly changing data, e.g. a
news archive or product catalogues of HiFi-components. The change of the database,
i.e. the change, the deletion, or insertion of an item, requires propagation onto every
server. Therefore, it is necessary to define synchronization times to change the data-
base to the new version.

The structure of a blinded read server of the closed architecture is shown in Fig. 10.
The blinded read server has an interface any client can connect to. In its trusted area, a
database contains the available data, i.e. the database is stored at the same computer as
the blinded read server or it can be accessed very efficient over a local network.

B
linded R

ead S
erver

Database

Trusted area

Fig. 10. Closed Architecture.

A client needs an address table to access the data items. The blinded read server
will create this table and will transmit it to any client who requests it. The table further
contains the synchronization times, so the client knows how long this table will be
valid, and when he must request a new table.

The advantage of the closed architecture is the direct and fast access to the data
items. Furthermore, the architecture has the same security properties as the blinded
read, so no additional protection is necessary. However, a close architecture has lim-
ited resources, i.e. limited storage, and the synchronization requirement makes it more
difficult to administer.

6 Conclusion

In this work we demonstrated that PIR can be used to protect the user’s interest. PIR
provides strong protection – and potentially perfect protection if the modifications
suggested in this work5 are used. Thus, Web-PIR is an alternative to the MIX-based

5 Not all simple details are given in this work, e.g. the requested pages should be have the same

length. But this is also valid for MIXes and the general response to this problem is to add ad-
ditional padding bits.

solutions if only the reading function is considered. The following features can be
identified comparing the applications of the both techniques (see Table 1).

Method Protection Client Server Trust model

MIX Complex-
ity theoretic
approach

Organization
of n clients

No modifi-
cation

N MIX stations and
n clients

PIR Perfect Spontaneous
communication

New design N Server6

Table 1: Difference between Mix and PIR.

As shown in the beginning of this work, the MIX technique provides at most a

complexity-theoretic protection. All known implementations are far behind this pro-
tection goal. Another drawback is the trust model: The more trust is required by the
system, the more attack possibilities will arise. The MIX technique has to trust n other
clients and N servers. Particularly, the organization of n other clients is a critical part
here (for this function a global public key infrastructure is needed) if the maximum
protection strength is envisaged. All of the deployments known to us neglect this im-
portant point.

The great advantage of the MIX method is that it can be used for both sending and
receiving of messages. Since there is no need for a major modification of all servers,
potentially all servers in the Internet could be addressed. The general applicability is a
major drawback of PIR, since the server has to be redesigned. But for some servers
providing some critical services (information), PIR can provide perfect protection of
the user’s privacy.

References

1. A. Ambainis: Upper Bound on the Communication Complexity of Private Information Re-
trieval, ICALP, LNCS 1256, Springer-Verlag, Berlin 1997.

2. A. Beimel, Y. Isahi, T. Malkin: Reducing the Servers Computation in Private Information
Retrieval PIR with Preprocessing, CRYPTO 2000, LNCS 1880, Springer-Verlag, 2000.

3. A. Beimel, Y. Isahi, T. Malkin, and E. Kushilevitz: One-way functions are essential for
single-server private information retrieval, In Proc. of the 31st Annu. ACM Symp. on the
Theory of Computing (STOC), 1999.

4. O. Berthold, S. Clauß, S. Köpsell, A. Pfitzmann: Efficiency Improvements of the Private
Message Service, 4th International Information Hiding Workshop, PA, USA 25. 4. 2001.

5. O. Berthold, H. Federrath, S. Köpsell: Web MIXes: A System for Anonymous and Unob-
servable Internet Access, IWDIAU, LNCS 2009, Springer-Verlag, 2001.

6. C. Cachin, S. Micali, M. Stadler: Computationally private information retrieval with poly-
logarithmic communication, In EUROCRYPT '99, LNCS 1592, Springer, 1999.

6 Again, if perfect security is not envisaged then PIR does not need to trust the server [3, 6, 20].

7. D. Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms, Com-
munications of the ACM 24/2 (1981).

8. D. Chaum: The Dining Cryptographers Problem: Unconditional Sender and Recipient Un-
traceability, Journal of Cryptology 1/1 (1988).

9. B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan: Private Information Retrieval, Proc. of the
36th Annual IEEE symposium Foundations of Computer Science, 1995.

10. B. Chor, N. Gilboa: Computationally Private Information Retrieval, 29th Symposium on
Theory of Computing (STOC) 1997, ACM, New York 1997.

11. D. Cooper, K. Birman: The design and implementation of a private message service for
mobile computers, Wireless Networks 1, 1995.

12. L. Cottrell: MIXmaster and Remailer Attacks, http://www.obscura.com
/~loki/remailer/remailer-essay.html, 2001.

13. G. Di Crescenzo, Y. Ishai, R. Ostrovsky: Universal Service-Providers for Private Informa-
tion Retrieval, Journal of Cryptology 14, 2001.

14. T. Demuth, A. Rieke: JANUS: Server-Anonymität im World Wide Web, Sicherheitsinfra-
strukturen, Vieweg Verlag, 1999 (DuD-Fachbeiträge).

15. D. J. Farber, K. C. Larson: Network Security Via Dynamic Process Renaming, 4th Data
Communications Symposium, 7-9 Oktober 1975, Quebec City, Canada.

16. C. Gülcü, G. Tsudik: Mixing Email with Babel, Proc. Symposium on Network and Distrib-
uted System Security, San Diego, IEEE Comput. Soc. Press, 1996.

17. P. A. Karger: Non-Discretionary Access Control for Decentralized Computing Systems,
Master Thesis, MIT, , Mai 1977, Report MIT/LCS/TR-179.

18. D. Kesdogan: Privacy im Internet, Vieweg Verlag, ISBN: 3-528-05731-9, 1999.
19. J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, A. S. Tomkins: The Web as a

graph: measurements, models, and methods, Proc. 5th Annual Int. Conf. Computing and
Combinatorics, (1999).

20. E. Kushilevitz and R. Ostrovsky: Replication is not needed: Single database, computation-
ally-private information retrieval, In IEEE FOCS '97, 1997.

21. R. Mathar, D. Pfeifer: Stochastik für Informatiker, Teubner, Stuttgart, 1990.
22. R. Ostrovsky, V. Shoup: Private Information Storage, STOC 1997, ACM, New York 1997.
23. A. Pfitzmann: Diensteintegrierende Kommunikationsnetze mit teilnehmer-überprüfbarem

Datenschutz, IFB 234, Springer-Verlag, 1990.
24. A. Pfitzmann, M. Waidner: Netw. without user observability, Computers&Security 6/2, 87
25. M.G. Reed, P.F. Syverson, D.M. Goldschlag: Anonymous Connections and Onion Routing,

Proc. of the 1997 IEEE Symposium on Security and Privacy, Mai 1997.
26. J. F. Raymond: Traffic Analysis: Protocols, Attacks, Design Issues, and Open Problems,

IWDIAU, LNCS 2009, Springer-Verlag, 2001.
27. M. K. Reiter, A. D. Rubin: Crowds: Anonymity for Web Transactions, ACM Transactions

on Information and System Security, Volume 1, 1998.
28. C. Rackoff, D. R. Simon: Cryptographic defense against traffic analysis, In 25th Annual

ACM Symposium on the Theory of Computing, Mai 1993.
29. C. E. Shannon: Communication Theory of Secrecy Systems; The Bell System Technical

Journal, Vol. 28, No. 4, Oktober 1949.
30. S. W. Smith, D. Safford: Practical Server Privacy with Secure Coprocessors, IBM Systems

Journal. http://www.cs.dartmouth.edu/~sws/papers/
31. M. Waidner: Unconditional Sender and Recipient…, Eurocrypt ’89, LNCS 434, 1990.
32. Zero-Knowledge-Systems, Inc.: http://www.freedom.net/ (2001).

