
Measuring Information Leakage in Website Fingerprinting
Attacks and Defenses

Shuai Li
University of Minnesota

Minneapolis, MN
lixx2381@umn.edu

Huajun Guo
University of Minnesota

Minneapolis, MN
guoxx663@umn.edu

Nicholas Hopper
University of Minnesota

Minneapolis, MN
hoppernj@umn.edu

ABSTRACT
Tor provides low-latency anonymous and uncensored network
access against a local or network adversary. Due to the design choice
to minimize traffic overhead (and increase the pool of potential
users) Tor allows some information about the client’s connections
to leak. Attacks using (features extracted from) this information
to infer the website a user visits are called Website Fingerprinting
(WF) attacks. We develop a methodology and tools to measure the
amount of leaked information about a website. We apply this tool
to a comprehensive set of features extracted from a large set of
websites and WF defense mechanisms, allowing us to make more
fine-grained observations about WF attacks and defenses.

CCS CONCEPTS
• Security and privacy→ Web protocol security;

KEYWORDS
Website Fingerprinting; Tor; Anonymity
ACM Reference Format:
Shuai Li, Huajun Guo, and Nicholas Hopper. 2018. Measuring Information
Leakage in Website Fingerprinting Attacks and Defenses. In 2018 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’18), Oc-
tober 15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3243734.3243832

1 INTRODUCTION
The Tor anonymity network uses layered encryption and traffic
relays to provide private, uncensored network access to millions of
users per day. This use of encryption hides the exact contents of
messages sent over Tor, and the use of sequences of three relays
prevents any single relay from knowing the network identity of
both the client and the server. In combination, these mechanisms
provide effective resistance to basic traffic analysis.

However, because Tor provides low-latency, low-overhead com-
munication, it does not hide traffic features such as the volume,
timing, and direction of communications. Recent works [22, 34, 46]
have shown that these features leak information about which web-
site has been visited to the extent that a passive adversary that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243832

records this information is able to train a classifier to recognize the
website with more than 90% accuracy in a closed-world scenario
with 100 websites. This attack is often referred to as a Website Fin-
gerprinting (WF) attack. In response, many works [5, 6, 9, 11, 33, 35,
37, 46, 48, 49] have proposed defenses that attempt to hide this in-
formation, by padding connections with extra traffic or rearranging
the sequence in which files are requested.

Defense Evaluation. To evaluate a defense, the popular practice
is to train classifiers based on altered traffic characteristics and
evaluate the effect of the defense by classification accuracy. If the
accuracy of the classifier is low enough, the defense is believed to be
secure with minimal information leakage; one defense is believed
to be better than another if it results in lower accuracy.

Accuracy vs. Information Leakage. We raise a question: does low
accuracy always mean low information leakage from WF defenses?
Our answer is no. The first reason is that accuracy is classifier-
dependent. It is possible that the information leakage of a WF
defense is high, but the classifier is ineffective, so that its accuracy is
low. More importantly, accuracy is all-or-nothing: classifiers output
a single guess and if it is wrong, this is judged to mean the defense
has been successful. But it ignores cases where a classifier may
confuse some pages with a small set of others. In such situations,
an attacker may well be able to significantly reduce the set of likely
pages represented by a fingerprint, even if they cannot reliably
choose the correct page from among this set. We can see that the
fingerprint can contain a great deal of information about the web
page even if the classifier cannot accurately identify the correct
page. Accuracy is prone to underestimate the information leakage

Accuracy α

In
fo

m
a

ti
o

n
 L

e
a

k
a

g
e

 (
B

it
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

Upper Bound

Lower Bound

Generic Maximum

Figure 1: Accuracy vs. Information Leakage. This figure shows
the range of potential information leakage for a given classification
accuracy (in the closed-world setting with 100 websites)

https://doi.org/10.1145/3243734.3243832
https://doi.org/10.1145/3243734.3243832

in WF defenses, or in other words, low accuracy doesn’t necessarily
mean low information leakage.

We further prove the above observation by the information-
theoretic quantification upon a given accuracy. We find that in a
closed-world setting with n websites, a feature set yielding a classi-
fier with accuracy α could leak information through the classifier
with the uncertain range (1−α) log2 (n− 1) (the difference between
the maximum and minimum). The proof also shows that such un-
certainty increases with lower accuracy. Figure 1 shows that when
n = 100 and α = 0.95, the uncertain range is only 0.33 bit; but when
α = 0.05, the possible leakage could be as high as 6.36 bits and as
low as 0.06 bits! This uncertainty reveals the potential discrepancy
between information leakage and accuracy in evaluating WF de-
fenses, though its impact onWF attacks is limited. Low information
leakage implies low classification accuracy, but the converse is not
necessarily true, thus we argue that validating WF defenses by
accuracy alone is flawed.

Feature Evaluation.Different featuresmay carry different amounts
of information. WF defense designers can evaluate features to find
more informative ones to hide [6]; attackers can do so to discover
highly informative features and optimize their feature set [22]. Ex-
isting works [6, 22] designed comparative methods to rank the
features by their information leakage, but these methodologies do
not give a straightforwardway to quantify the relationships between
features. How much information do features A and B share? If fea-
ture A is more informative than features B or C alone, are features
B and C together more informative than A? These methodologies
are unable to answer these questions.

We argue that these coarse-grained evaluations of features and
defenses are overly simplistic. The analysis of new WF attack fea-
tures and defenses should start with the question: how much infor-
mation is leaked? To answer this question, two challenges should
be addressed. The first challenge is finding a way to model the
behavior of WF features and the interaction between them; these
features can have highly complex relationships and behavior, ex-
hibiting distributions that could be discrete, continuous, or even
partly discrete and partly continuous. The second challenge is the
curse of dimensionality when estimating the total information leak-
age, as the state-of-art feature sets are usually high-dimensional.
Unfortunately, existing works [10, 32] limited their experimental
measurement to features’ individual information leakage, and they
cannot overcome these challenges.

Information LeakageMeasurement Framework. In this paper,
we develop WeFDE (forWebsite Fingerprint Density Estimation),
a methodology for modelling the likelihood functions of website
fingerprints, and a set of tools for measuring the fingerprints’ infor-
mation leakage. To address the first challenge, WeFDE uses adap-
tive kernel density estimation [44] to model the probability density
function of a feature or a category of features. By allowing ker-
nels to determine their bandwidth separately, we adaptively model
both continuous and discrete density functions; by estimating multi-
dimensional kernels over sets of features, we model the interactions
between features. We address the second challenge by introducing
a set of dimension reduction approaches. Firstly, we measure fea-
tures’ pairwise mutual information to exclude redundant features.

Secondly, we use Kononenko’s Algorithm [8, 27] and DBSCAN [13]
to separate features into sub-groups, which have pairwise mutual
information higher than a threshold ϵ within each group, and lower
than ϵ among different groups. Then we apply adaptive kernels for
each sub-group with reduced dimensionality. Finally, our experi-
ment shows that by including enough highly informative features
we are able to approximate the overall information leakage. This
enables us to further reduce the dimensionality of our measurement.

Measurement Results.We apply WeFDE to a comprehensive list
of 3043 features (including, to the best of our knowledge, all features
in the Tor WF literature [7, 11, 22, 34, 36, 40, 46, 47]) extracted from
a 211219 Tor web browsing visits for about 2200 websites. Among
the features of WF attacks, we find that: (a) 45.36% of 183 most
informative features are redundant; (b) an individual feature leaks
no more than 3.45 bits information in the closed-world setting with
100 websites, which is the maximum leakage we observe in our
experiment from the feature of rounded outgoing packet count; (c)
download stream, though having more packets than upload stream,
leaks less information; (d) a larger world size has little impact on a
WF feature’s individual information leakage. We also include WF
defenses such as Tamaraw [6], BuFLO [11], Supersequence [46],
WTF-PAD [25], and CS-BuFLO [5] to study the discrepancy be-
tween accuracy and information leakage. Our experimental results
confirm this discrepancy and demonstrate that accuracy alone is
not reliable to validate a WF defense or compare multiple ones. We
also find that the information leakage of WTF-PAD [25] is unusu-
ally high. Interestingly, recent work [42] confirms our result by
achieving 90% classification accuracy against WTF-PAD.

Contributions.We provide our contributions as follows. First, this
paper identifies that validating WF defenses by accuracy alone is
flawed. By information-theoretic quantification, we find that when
accuracy is low, its corresponding information leakage is far from
certain. Second, we propose WeFDE which makes it possible to
measure the joint information leakage from a large set of features.
In contrast, existing works only limited their experimental measure-
ment to features’ individual information leakage, and they cannot
cope with features of complex property. WeFDE overcomes these
two limitations. We also release the source code of WeFDE in the
GitHub repository1. Third, we use WeFDE to perform information
leakage measurement for all 3043 features proposed in the Tor web-
site fingerprinting literature, based on a large dataset having 211219
Tor web browsing visits to about 2200 websites. As far as we know,
our work is the first large-scale information leakage measurement
in the literature. Fourth, our measurement results provide the new
information-theoretic insights upon WF features, and these results
give the empirical confirmation that accuracy is not reliable to
validate a WF defense or compare multiple ones.

The paper is organized as follows: Section 2 and Section 3 give
background and related works on WF attacks and defenses, with
Section 4 introducing the features. Section 5 introduces the system
design of WeFDE. Section 6, Section 7, Section 8, and Section 9 give
information leakage measurement results, and Section 10 provides
discussions. Finally, we conclude in Section 11.

1https://github.com/s0irrlor7m/InfoLeakWebsiteFingerprint

2 WF ATTACK MODELS
A WF attacker aims at learning which website a user has visited.
The attacker can be an Internet Service Provider (ISP) or a ma-
licious Tor entry guard. It is supposed to be passive (no packet
manipulation), but it can eavesdrop the traffic originated from or
destinated to the user. Without turning to traffic contents or its
IP addresses (both can be encrypted or obfuscated), the attacker
inspects the traffic fingerprints for detection. These fingerprints
can be packet length or the transmission time. Neither Crypto-
graphic algorithms nor the anonymous services such as Tor can
cover such fingerprints. State of art attacks [22, 34, 46] demonstrate
that the fingerprints carry sufficient information that the attacker
can pinpoint the visited website by more than 90% accuracy (with
assumptions). In the following, we introduce two attack models of
the website fingerprinting attack.

Closed-World Attack Model. An attacker in the closed-world
knows a set of websites C = {c1, c2, · · · , cn } the user may visit. We
adopt an equal-prior model, in which the user visits a website with
probability 1/n. The attacker’s goal is to decide which oneis visited.

Open-World Attack Model. The attacker in this attack model
has a set of websites for monitoring; its goal is to decide whether the
user visited a monitored website or not, and if yes, which monitored
website. Though the user may visit any website, a non-monitored
set of websites are introduced to approximate the user visiting the
non-monitored websites. We consider a popularity-prior model, in
which we give prior probabilities to websites by their popularity,
without considering whether the websites are monitored or not.

3 RELATEDWORK
Website Fingerprinting Attacks. The first category of WF at-
tacks targeted encrypted protocols with no packet length hid-
ing [30]. More recent website fingerprinting attacks focus on Tor
anonymous service, in which the unique packet length is hidden
by fixed-size Tor cells. Cai et al. [7] used edit distance to compare
Tor packet sequences, and achieved 86% accuracy in the closed-
world scenario with 100 websites. Wang and Goldberg [47] further
improve the accuracy to 91% by using Tor cells instead of TCP/IP
packets, deleting SENDMEs, and applying new metrics such as fast
Levenshtein. Their later work [46] increases the accuracy by using
a KNN classifier. Panchenko et al. [34] introduces a new method to
extract the packet number information, which increases the accu-
racy by 2%. Recently, Hayes and Danezis [22] use random forests
to construct the current state-of-art website fingerprinting attack.

Website FingerprintingDefenses. Several defenses have been
proposed to defeat WF attacks. One category of defenses try to
randomize the traffic fingerprints by traffic morphing [49], loading
a background page [35], or randomized pipelining [37]. These are
demonstrated ineffective by several works [7, 46].

Another category of defenses try to hide traffic features by de-
terministic approaches. By holding the packets or creating dummy
packets, BuFLO [11] requires the packets sent in fixed size and fixed
time interval. The packets are padded until reaching a transmis-
sion time threshold τ if their original transmission time is shorter.
Otherwise, BuFLO lets the traffic finish. CS-BuFLO [5] is proposed
to extend BuFLO to include congestion sensitivity and some rate
adaptation. Tamaraw [6] improves the efficiency of BuFLO by two
methods. First, it allows different transmission rate for outbound

and inbound traffic. Second, it pads to make the packet count a
multiple of parameter L: if the packet number in one direction
is more than nL and less than (n + 1)L, it sends padding packets
until the count is (n + 1)L. Supersequence [46] utilizes clustering
algorithms to group websites. For each group of websites, Superse-
quence computes a super trace to be the manner of transmitting
the instances of the websites under this group. WTF-PAD [25] uses
adaptive padding to be efficient. Our paper includes these defenses
for information leakage evaluation. We leave recently proposed
defenses [9, 48] in our future work.

Website Fingerprinting Evaluation. Juarez et al. [24] evalu-
ates the effectiveness ofWF attacks in practical scenarios, enumerat-
ing several assumptions about user settings, adversary capabilities,
and the nature of the web that do not always hold. Without these
assumptions, the accuracy of the attacks are significantly decreased.
Cai et al. [6] use a comparative method to analyze defenses. They
apply generators to transform a website class C into C ′, making C
and C ′ differ only by one (category of) feature. Then they evalu-
ate whether a specific defense is successful in hiding the feature.
Though they claim this method can shed light on which features
convey more information, the information leakage comparison
between features is unclear and not quantified.

Cherubin [18] provides the lower bound estimate for an at-
tacker’s error. The error of the Nearest Neighbor classifier is used
to estimate the lower bound of the Bayes error, which is further
used to be the lower bound for the error of any classifier. Based
on such lower bound, a new privacy metric called (ξ ,Φ)–privacy
is proposed. Though this privacy metric is not dependent on any
specific classifier, it is still a variant of the accuracy/error metric,
and therefore the flaw of accuracy also applies to (ξ ,Φ)–privacy.

Security Measurement by Information Theory. There are
two information leakage studies in website fingerprinting attacks,
but they are limited from quantification methodology and dataset
size, to feature set and analysis. Such limitations prevent them from
answering the question: how much information in total is leaked
from the website fingerprint?

Chothia et al. [10] proposed a system called leakiEst to quantify
information leakage from an observable output about a single secret
value. Then leakiEst was applied on e-passports and Tor traffic.
However, leakiEst can only measure the information leakage of a
single feature, rather than a category of features or all features. In
addition, it only included 10 visits for 500 websites in their dataset,
and it just considered 75 features. Furthermore, leakiEst cannot
deal with information leakage under various scenarios, such as
open-world setting and setting with defenses.

Mather et al. [32] quantified the side-channel information leak-
age about the user’s inputs in the web applications. However, the
work shared many of the above limitations. The experiment only
considered packet size features; the size of the dataset was un-
known; the quantification only came to a single feature. Though
the work included the multivariate extension, it didn’t apply it in
the experiment, and it didn’t have dimension reduction to handle
the curse of the dimensionality.

In comparison, our paper overcomes these limitations, and it can
measure information leakage from a category of features. Specifi-
cally, it includes all 3043 features proposed in TorWF literatures and
much larger dataset with 211219 visits. The resulting information

Source Instances Batches
Closed-World Alexa 1-100 55779 20

Open-
World

Monitor [46] 17985 8
Non-Monitor Alexa 1-2000 137455 10

Table 1: DATASET.We adopt Crawler [3] to collect the network
traffic in batches. This crawler uses Selenium to automate the Tor
Browser Bundle and applies Stem library to control the Tor process.
It extended the circuit renewal period to 600,000 minutes and dis-
abled UseEntryGuard to avoid using a fixed set of entry guards. We
apply the method in [34] to extract the cell packets from the traffic
and measure the information leakage based on the cell packets.2

leakage quantification is therefore more accurate and representa-
tive. It’s able to quantify information leakage of a set of features
with high dimension, so that it can tell how much information is
leaked in total. More importantly, our paper not only quantifies the
information leakage, but also reveals and analyzes the discrepancy
between accuracy and information leakage when validating WF
defenses. Our exprimental results demonstrate the flaw of accuracy.

Mutual Information Estimation. Kernel Density Estimate
(KDE) and k-nearest neighbors (k-NN) are two popular approaches
to estimate the mutual information between two random variables.
They are believed to outperform other estimators due to their abil-
ity to capture the nonlinear dependence where present [26]. In
this paper, we choose KDE instead of k-NN for the following rea-
sons. Firstly, k-NN tends to underestimate mutual information be-
tween strongly dependent variables [16, 41]. In security settings,
this means the measured information leakage would be less than it
should be, making k-NN unsuitable for information leakage mea-
surement. More importantly, we find that the KSG estimator [28],
which is the most popular k-NN estimator, is unable to handle a
categorial random variable. This limitation matters because in Sec-
tion 5.1 we will see one of variables is about website information,
which is categorial. We further confirm the above two reasons by
an experiment. We find the total information leakage measured by
the KSG estimator is around 2 bits in a closed-world setting with
100 websites, much lower than what WF attacks have shown. Thus,
we choose the KDE approach in our paper.

4 TRAFFIC AND ITS FEATURES
A user’s traffic is a sequence of packets with timestamps which
are originated from or destinated to it. We use T (C) to denote the
traffic when the user visited the website C . Then

T (C) = ⟨(t0, l0), (t1, l1), · · · , (tm , lm)⟩ , (1)

where (ti , li) corresponds to a packet of length |li | in bytes with a
timestamp ti in seconds. The sign of li indicates the direction of
the packet: a positive value denotes that it is originated from the
server, otherwise the user sent the packet. Table 1 describes our
collected traffic for information leakage measurement.

In the state-of-art website fingerprinting attacks [22, 34, 46], it
is the features of the traffic rather than the traffic itself that an
attacker uses for deanonymization. One of the contribution of this

2Our dataset allows the websites to have different number of instances. This uneven
distribution is mostly caused by the failed visits in the crawling process. Note that it
doesn’t impact our information leakage measurement.

Index Category Name [Adopted by] No.
1 Packet Count [11, 22, 34, 36, 46] 13
2 Time Statistics [11, 22, 46] 24
3 Ngram [this paper] 124
4 Transposition [22, 46] 604
5 Interval-I [22, 46] 600
6 Interval-II [40] 602
7 Interval-III [36] 586
8 Packet Distribution [22] 225
9 Bursts [46] 11
10 First 20 Packets [46] 20
11 First 30 Packets [22] 2
12 Last 30 Packets [22] 2
13 Packet Count per Second [22] 126
14 CUMUL Features [34] 104

Table 2: Feature Set. 3043 features from 14 categories

paper is that it measures a complete set of existing traffic features
in literatures of website fingerprinting attacks in Tor [11, 22, 34,
36, 40, 46]. Table 2 summarizes these features by category. More
details about the feature set can be found in Appendix E.

5 SYSTEM DESIGN
5.1 Methodology
The features leak information about which website is visited. To-
tal packet count is a good example. Figure 2 shows that visit-
ing www.google.de creates 700 to 1000 packets, while browsing
www.facebook.com results in 1100 to 1600 packets. Suppose an at-
tacker passively monitors a Tor user’s traffic, and it knows that the
user has visited one of these two websites (closed-world assump-
tion). By inspecting the total packet count of the traffic, the attacker
can tell which website is visited.

Different features may carry different amounts of information.
Figure 2 displays the download time in visiting www.google.de
and www.facebook.com. The former loads in about 3 to 20 seconds,
and the latter takes 5 to 20 seconds; Their distributions of download
time are not easily separable. As a result, the attacker learns much
less information from the download time than from total packet
count in the same closed-world scenario.

0 5 10 15 20 25 30
0

20

40

60

Transmission Time (s)

In
s

ta
n

c
e

 N
u

m
b

e
r

google.de
facebook.com

600 800 1000 1200 1400 1600
0

50

100

150

Total Packet Count

In
s
ta

n
c
e
 N

u
m

b
e
r

facebook.com
google.de

Figure 2: Different features may carry different amount of
information. Take transmission time and total packet count
as an example. This figure shows the latter carries more infor-
mation in telling which website is visited (www.google.de or
www.facebook.com)

Figure 3: WeFDE’s Architecture

This raises question of how to quantify the information leakage
for different features. We adopt mutual information [31], which
evaluates the amount of information about a random variable ob-
tained through another variable, which is defined as:

DEFINITION. Let F be a random variable denoting the traffic’s
fingerprint, and supposeW to be the website information, then
I (F ;W) is the amount of information that an attacker can learn
from F aboutW , which equals to:

I (F ;W) = H (W) − H (W |F) (2)

I (·) is mutual information, and H (·) is entropy. In the following, we
describe our system to measure this information leakage.

5.2 System Overview
Aimed at quantifying the information leakage of a feature or a
set of features, we design and develop our Website Fingerprint
Density Estimation, or WeFDE. Compared with existing systems
such as leakiEst [10], WeFDE is able to measure joint information
leakage for more than one feature, and it is particularly designed
for measuring the leakage from WF defenses, in which a feature
could be partly continuous and partly discrete.

Figure 3 shows the architecture of WeFDE. The information leak-
age quantification begins with the Website Fingerprint Modeler,
which estimates the probability density functions of features. In
case of measuring joint information of features, Mutual Informa-
tion Analyzer is activated to help the Modeler to refine its models
to mitigate the curse of dimensionality. During the information
leakage quantification, the Website Fingerprint Modeler is used to
generate samples. By Monte Carlo approach [21] (see Appendix
G for more information), the Information Leakage Quantifier de-
rives the final information leakage by evaluating and averaging the
samples’ leakage. In the following, we describe our modules.

5.3 Website Fingerprint Modeler
The task of Website Fingerprint Modeler is to model the probability
density function (PDF) of features. A popular approach is to use a
histogram. However, as the traffic features exhibit a great range of
variety, it’s hard to decide on the number of bins and width. WeFDE
adopts Adaptive Kernel Density Estimate (AKDE) [39], which out-
performs histogram in smoothness and continuity. AKDE is a non-
parametric method to estimate a random variable’s PDF. It uses
kernel functions—a non-negative function that integrates to one
and has mean zero—to approximate the shape of the distribution.

Choosing proper bandwidths is important for AKDE to make
an accurate estimate. WeFDE uses the plug-in estimator [43] for
continuous features, and in case of failure, WeFDE uses the rule-of-
thumb approach [43] as the alternative. If the feature is discrete, we
let the bandwidth be a very small constant (0.001 in this paper). The
choice of the small constant has no impact on the measurement, as
long as each website uses the same constant as the bandwidth.

To model the features’ PDFs in WF defenses, WeFDE has two
special properties. Firstly, our AKDE can handle a feature which is
partly continuous and partly discrete (or in other words, a mixture
of continuous and discrete random variables). Such features exist in
a WF defense such as BuFLO [11] which always sends at least T sec-
onds. These features would be discrete if the genuine traffic can be
completed within time T , otherwise, the features would be contin-
uous. Secondly, our AKDE is able to distinguish a continuous-like
discrete feature. Take transmission time as an example. This feature
is used to be continuous, but when defenses such as Tamaraw [6]
are applied, the feature would become discrete. Our modeler is
able to recognize such features. For more details, please refer to
Appendix C.

We further extend WeFDE to model a set of features by adopting
the multivariate form of AKDE. However, when applying multi-
variate AKDE to estimate a high dimensional PDF, we find AKDE
inaccurate. The cause is the curse of dimensionality: as the di-
mension of the PDF increases, AKDE requires exponentially more
observations for accurate estimate. Considering that the set of fea-
tures to be measured jointly could be large (3043 features in case
of total information measurement), we need dimension reduction
techniques. In the following, we introduce our Mutual Information
Analyzer to mitigate the curse of dimensionality.

5.4 Mutual Information Analyzer
The introduction of Mutual Information Analyzer is for mitigating
the curse of dimensionality in multivariate AKDE. It helps the
Website Fingerprint Modeler to prune the features which share
redundant information with other features, and to cluster features
by dependency for separate modelling.

This Analyzer is based on the features’ pairwise mutual informa-
tion. To make the mutual information of any two features have the
same range, WeFDE normalizes it by Kvalseth’s method [29] (other
normalization approaches [45] may also work). Let NMImax (c, r)
denote the normalized mutual information between feature c and
r , then it equals to:

NMImax (c, r) =
I (c; r)

max{H (c),H (r)}

Since I (c ; r) is less than or equal toH (c) andH (r),NMImax (c, r) is in

[0, 1]. A higher value of NMImax (c, r) indicates higher dependence
between r and c , or in other words, they share more information
with each other.

Grouping By Dependency. A workaround from curse of dimen-
sionality in higher dimension is to adopt Naive Bayes method,
which assumes the set of features to be measured is condition-
ally independent. Naive Bayes requires many fewer observations,
thanks to the features’ probability distribution separately estimated.
However, we find dependence between some features of the website
fingerprint, violating the assumption of Naive Bayes.

We adopt Kononenko’s algorithm (KA) [8, 27], which clusters
the highly-dependent features into disjoint groups. In each group,
we model the joint PDF of its features by applying AKDE. Among
different groups, conditional independence is assumed. KA takes
the advantage of how Naive Bayes mitigates the curse of dimen-
sionality, while keeping realistic assumptions about conditional
independence between groups.

We use clustering algorithms to partition the features into dis-
joint groups. An ideal clustering algorithm is expected to guarantee
that any two features in the same group have dependence larger
than a threshold, and the dependence of the features in different
groups is smaller than the same threshold. This threshold allows us
to adjust independence degree between any two groups. We find
that DBSCAN [13] is able to do so.

DBSCAN is a density-based clustering algorithm. It assigns a
feature to a cluster if this feature’s distance from any feature of the
cluster is smaller than a threshold ϵ , otherwise the feature starts a
new cluster. Such a design enables DBSCAN to meet our goal above.
To measure features’ dependence, we calculate their normalized
pairwise mutual information matrixM ; then to fit in with DBSCAN,
we convert M into a distance matrix D by D = 1 −M , where 1 is
a matrix of ones. A feature would have distance 0 with itself, and
distance 1 to an independent feature. We can tune ϵ in DBSCAN
to adjust the degree of independence between groups. We choose
ϵ = 0.4 in the experiments based on its empirical performance
in the trade-off between its impact on information measurement
accuracy and KA’s effectiveness in dimension reduction.

We model the PDF of the fingerprint by assuming independence
between groups. Suppose KA partitions the fingerprint f⃗ into k
groups, g⃗1, g⃗2, · · · , g⃗k , with each feature belonging to one and only
one group. To evaluate the probability p (⃗f |c j), we instead calculate
p̂ (g⃗1 |c j)p̂ (g⃗2 |c j) · · · p̂ (g⃗k |c j), where p̂ (·) is the PDF estimated by
AKDE.

As a hybrid of the AKDE and Naive Bayes, Kononenko’s algo-
rithm avoids the disadvantages of each. First, Kononenko’s algo-
rithm does not have the incorrect assumption that the fingerprint
features are independent. It only assumes independence between
groups, as any two of them have mutual information below ϵ . Sec-
ond, Kononenko’s algorithm mitigates the curse of dimensionality.
The groups in Kononenko’s algorithm have much less features than
the total number of features.

Dimension Reduction. Besides the KA method to mitigate the
curse of dimensionality, we employ two other approaches to further
reduce the dimension.

The first approach is to exclude features being represented by
other features. We use the pairwise mutual information to find pairs
of features that have higher mutual information than a threshold
(0.9 in this paper). Then we prune the feature set by eliminating
one of the features and keeping the other.

Our second approach is to pick out a number of the most infor-
mative features to approximate all features’ information leakage.
Given a set of features to measure, we sort the features by their
individual information leakage. Instead of measuring all features’
information leakage, we pick out top n features that leak the most
information about the visited websites. The measurement results by
varying n are shown in Figure 8 and Figure 12. It shows that with n

increasing, the top n features’ information leakage would increase
at first but finally reach a plateau. This phenomenon shows that
the information leakage of sufficient top informative features is
able to approximate that of the overall features. Such observation
is also backed by [22], which discovered that including more top
informative features beyond 100 had little gain for classification.

We didn’t choose other dimension reduction methods such as
Principal Component Analysis (PCA) [23]. Our goal is to mitigate
the curse of dimensionality in modelling website fingerprints by
AKDE; but methods like PCA transform website fingerprints into
opaque components which are much less understandable. More
importantly, our experimental results demonstrate the poor per-
formance of PCA. Figure 4 shows that the percentage of variance
retained when PCA reduces to a specific dimension. Note that the
percentage of variance is the popular approach to estimate the in-
formation loss in PCA. It displays that if our goal is to reduce the
dimension from 3043 to 100, the percentage of variance retained
after PCA is under 50%, indicating high information loss. Thus,
PCA doesn’t fit in our case.

The Results. Figure 5 displays the outcome of our Mutual Informa-
tion Analyzer. We pick out 100 most informative features (excluding
the redundant ones), and we apply Mutual Information Analyzer to
obtain 6 clusters. Figure 5 shows how many features each category
contributes, and which cluster the feature belongs to.

We find that redundant features are pervasive among the highly
informative features. We look at 183 most informative features, and
45.36% of them are redundant. This phenomenon suggests future
feature set engineeringmay be able to findmany redundant features
to prune without hurting its performance for website fingerprints.

Figure 5 shows a cluster may consist of features from different
categories. For example, Cluster2 has features from category 1, 8,
and 14, and Cluster3 has features from category 1, 3, and 14. This
phenomenon shows features from different categories may share
much information (that’s why they are clustered together). Figure
5 also shows features from same category are not necessarily in
the same cluster. For instance, the category 4 features are clustered
into three different clusters.

Figure 5 also shows that categories do not necessarily have fea-
tures to be included in clusters. We find that some categories lack
top informative features, ending up with absence of their features
in clusters. Here, we clarify that we don’t claim WeFDE to be free

0 200 400 600 800 1000
10

20

30

40

50

60

70

80

90

100

Dimension

P
e
rc

e
n

ta
g

e
 o

f
V

a
ri

a
n

c
e
 R

e
ta

in
e
d

Figure 4: the Percentage of Variance Retained in PCA. Per-
centage of variance indicates the information loss in PCA

0 10 20 30 40 50 60 70 80 90 100

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Number of Features

C
a

te
g

o
ry

 I
n

d
e

x

Cluster1 [34 Features]

Cluster2 [45 Features]

Cluster3 [13 Features]

Cluster4 [6 Features]

Cluster5 [1 Features]

Cluster6 [1 Features]

Redundant [83 Features]

Figure 5: The Clustering Results of Mutual Information An-
alyzer. 6 clusters are found for the most informative and non-
redundant 100 features.

of information loss. In fact, just like other dimension reduction
approaches such as PCA, there is information loss in WeFDE, but it
is minimal [22]. It’s also worth noting that though some categories
or features are not chosen byWeFDE, this doesn’t necessarily mean
all of their information is lost, as their information may be shared
and represented by other included categories or features.

Looking at 83 redundant features, we find 33 of them are re-
dundant with total packet count. These features include incoming
packet count and 2-gram (-1,-1), but exclude outgoing packet count
(NMI between total and outgoing packet count is 0.4414). The rea-
son is that the number of incoming packets are much more than
the number of outgoing packets in website browsing, so that total
packet count is highly dependent on incoming packet count.

Due to page limit, we release all our measurement results in our
GitHub repository.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Information Leakage

E
C

D
F

0.55

0.78

0.98

Figure 6: Information Leakage of Individual Features: Empir-
ical Cumulative Distribution Function (ECDF) in the closed-world
setting.

6 CLOSED-WORLD INFORMATION LEAKAGE
In closed-world setting, an attacker is assumed to know the possible
websites that a user may visit. The information leakage under this
setting comes to which website is visited. Appendix D gives more
details about how to calculate this information. In the measure-
ment, We adopt Alexa top 100 websites with 55779 visits in our
closed-world setting, as is shown in Table 1. We assume equal prior
probability for websites, and we set Monte Carlo sample number
to 5000. We measure 3043 features’ individual information leakage
and their joint leakage by categories. We run this measurement and
the following ones of this paper on a workstation with 32 cores
(Intel Xeon CPU E5-2630 v3 @ 2.40GHz). The measurement time
differs depending on the settings, but a typical measurement like

the setting here can be finished within 10 hours. The following in-
troduces part of our results. Full measurement results can be found
at our anonymous GitHub repository.

Individual Information Leakage. Our measurement results
upon individual features are shown in Figure 6. Among these 3043
features, we find: (a) 2.1% features leak more than 3 bits information,
meaning that an attacker is able to narrow down the possibilities
to one eighth by any of these features; (b) 19.91% features leak less
than 3 bit but more than 2 bits information; (c) 23.43% features leak
1 bit to 2 bits information; and (d) 54.55% features leak less than 1
bit information. It is clear that nearly half of the features are able to
help an attacker to reduce the size of the anonymity set by half. Yet
our experiment shows that a single feature leaks no more than 3.45
bits information, which is the maximum leakage we observe in our
experiment from the feature of rounded outgoing packet count. We
also observe that outgoing packet count without rounding leaks
3.26 bits information, 0.19 bit less than the rounded one. We ob-
serve similar information leakage increase by rounding for total
packet count and incoming packet count. Our results confirm the
observation in [36] that rounding packet count can help website
fingerprinting attacks.

Web-browsing is characterized by asymmetric traffic. The incom-
ing packets, which contain the requested contents, usually outnum-
ber the outgoing packets carrying the request. A natural question
is, does download stream having more packets leak more informa-
tion than upload stream? The answer is no: download stream leaks
3.04 bits information, 0.22 bit less than the incoming stream. Our
measurement suggests that defense design should give no less (if
not more) attention to upload stream in hiding both streams’ packet
count.

The most informative timing feature is the average of inter-
packet timing for download stream with 1.43 bit leakage. Among
inter-packet timing features, the maximum leaks the least infor-
mation with around 0.7 bit leakage. Another category of timing
features is transmission time. We observe that the information leak-
age increases from 25% percentile to 100% percentile transmission
time. The most information leakage for transmission time comes
to the total transmission time, which leaks 1.21 bit information.
Furthermore, our measurement shows that information leakage
of timing features has little difference for upload and download
stream.

We also experiment the impact of world size on individual fea-
ture’s information leakage. We try to answer: with a larger world
size, whether the information leakage of indiviual features increases
or decreases.We further adopt Alexa top 500 and top 1000 separately
for closed-world setting, and we conduct the same information leak-
age measurement as above. Note that the information leakage upper
bound under the world size 100, 500, and 1000 is 6.64, 8.97, and 9.97
bits, respectively. Our finding is that the impact of world size on
information leakage is minimal, as is shown in Figure 7. Particu-
larly, when the world size increases from 500 to 1000, the features’
individual information leakage is almost the same. Further analysis
will be given in Appendix F.

Joint Information Measurement. Among the 100 most infor-
mative features, many of the features share redudant information
with other features. We set a threshold to 0.9, and if two features

1 13
0

1

2

3

4
Pkt. Count

top100

top500

top1000

14 37
0

1

2

3

4
Time

38 161
0

1

2

3

4
Ngram

162 765
0

1

2

3

4
Transposition

766 1365
0

1

2

3

4
Interval−I

1366 1967
0

1

2

3

4
Interval−II

In
fo

rm
a
ti

o
n

 L
e
a
k
a
g

e
 (

b
it

)

1968 2553
0

1

2

3

4
Interval−III

2554 2778
0

1

2

3

4
Pkt. Distribution

2779 2789
0

1

2

3

4
Burst

2790 2809
0

1

2

3

4
First20

2810 2811
0

1

2

3

4
First30 Pkt. Count

2812 2813
0

1

2

3

4
Last30 Pkt. Count

2814 2939
0

1

2

3

4
Pkt. per Second

Feature Index
2940 3043
0

1

2

3

4
CUMUL

Figure 7: Closed-World Setting: Information Leakage for Individual Features (bit). Individual features have similar leakage with
world size of 500 and 1000, indicating likely maximums

0 50 100
0

5

10

Total

top100

top1000

top2000

0 5
0

5

10

Pkt. Count

0 10 20
0

5

10

Time

0 50 100
0

5

10

Ngram

0 50 100
0

5

10

Transposition

0 50 100
0

5

10

Interval−I

In
fo

rm
a

ti
o

n
 L

e
a

k
a

g
e

 (
B

it
)

0 50 100
0

5

10

Interval−II

0 50 100
0

5

10

Interval−III

0 50 100
0

5

10

Pkt. Distribution

0 5 10
0

5

10

Burst

0 10 20
0

5

10

First20

0 1 2
0

5

10

First30 Pkt. Count

0 1 2
0

5

10

Last30 Pkt. Count

Number of Most Informative Features
0 50 100

0

5

10

Pkt. per Second

0 50
0

5

10

CUMUL

Figure 8: Closed-World Setting: Information Leakage by Categories (bit). The aggregate information from most categories of feature
grows with the world size, indicating that these categories of features can be used to distinguish between larger sets of websites

have mutual information larger than 0.9, we would consider a fea-
ture sharing most of its information with another one. Our results
show that 62 of the 100 most informative features can be repre-
sented by the other 38 features, demonstrating the prevalence of
redundant features in website fingerprint. This finding shows the
necessity and effectiveness of our Mutual Information Analyzer in
recognizing features sharing redundant information. Figure 8 also
shows that after including sufficient non-redundant features, the
category information leakage tends to reach plateau. This phenom-
enon shows that we can approximate the information of a category
by including sufficient non-redundant most informative features in
this category.

Categories such as Time, Ngram, Transposition, Interval-II, Interval-
III, Packet Distribution, Packet per Second, and CUMUL leak most
of the information about the visited websites; other categories such
as Packet Count, Interval-I, Burst, First20, First30 Packet Count,
Last30 Packet Count leak 5.75, 5.86, 6.2, 4.20, 1.29, and 1.03 bits
information, respectively. Our measurement shows that Interval-II
and Interval-III leak more information than Inerval-I, with 6.63
bits for both Interval-II and Interval-III. In addition, we find that
Interval-II and Interval-III are faster than Interval-I in reaching the
plateau, indicating the former twos not only leak more information
but also with less features. It is clear that recording intervals by their
frequency of packet count (adopted in Interval-II and Interval-III)
is more preferable than recording them in sequence (Interval-I).

We also experiment the impact of world-size on information
leakage upon categories in closed-world setting. We find that with
the increase of world size, most categories exhibit more informa-
tion leakage, except First30 and Last30 Packet Count. Note that
categories such as First20, Burst, Packet Count show little increase
when the world size increases from 1000 to 2000. We leave the
discussion to Appendix F.

0 20 40 60 80 100
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Top 100 Most Informative Features (indexed by rank)

In
fo

rm
a

ti
o

n
 L

e
a

k
a

g
e

 (
B

it
)

(a)

6.3

6.4

6.5

6.6

6.7

0 5 10 15
0

2

4

6

Category Index

In
fo

rm
a

ti
o

n
 L

e
a

k
a

g
e

 (
B

it
)

(b)

Figure 9: Information LeakageMeasurement Validation: 90%
Confidence Interval for the Measurement

7 VALIDATION
This section validates ourmeasurement results by bootstrapping [12].
Bootstrapping is a statistical technique which uses random sam-
pling with replacement to measure the properties of an estimator.
More details about bootstrapping are given in Appendix A.

Measurement Validation. This section shows how accurate
our measurement is. We adopt bootstrapping with 20 trials to give
the 90% confidence interval for the information leakage measure-
ment. Figure 9 (a) shows the confidence intervals for top 100 most
informative features. We find that the width of the intervals is less

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Top 100 Most Informative Features (indexed by rank)

In
fo

rm
a
ti

o
n

 L
e
a
k
a
g

e
 (

B
it

)

6

6.2

6.4

6.6

6.8

0 5 10 15
0

2

4

6

Category Index

In
fo

rm
a

ti
o

n
 L

e
a

k
a

g
e

 (
B

it
)

Figure 10: Dataset and Generalization: the 90% confidence in-
terval by bootstrapping

than 0.178 bit, and the median is around 0.1 bit. Figure 9 (b) gives
the 90% confidence interval for 15 categories. The width of these
intervals is less than 0.245 bit, with the median 0.03 bit. We find that
the interval of interval-I has the largest width. The bootstrapping
results validate our information leakage measurement.

Dataset Validation.We use the top 100 Alexa websites in the
closed-world setting, as do previous works. But what if the top
100 Alexa websites are not representative for Tor networks? Do
our information leakage results still hold? While the representative
websites are still unknown, we are able to validate our results by
bootstrapping.

In the experiment, we have 2200 websites for bootstrapping. In
each round, we randomly sample 100 websites without replacement
to construct the bootstrapped dataset. Here we didn’t use sampling
with replacement because it makes less sense that the same website
is included twice in a bootstrapped dataset. This special bootstrap-
ping technique is also called subsampling [38]. Repeating the same
procedure n times (n = 20 in our experiment), we have n such
datasets to obtain n bootstrapped measurements. Finally, we get
the bootstrapped confidence interval for validation.

Figure 10 displays the 90% confidence interval for the top 100
most informative features and 15 categories of features. Not surpris-
ingly, including different websites in the closed-world setting does
make a difference in the measurement, but Figure 10 shows such
impact is very limited. Among top 100 informative features, most
of them have confidence interval with less than 0.5 bit width, so do
most of categories (even less for some categories). The exception
only comes to category Interval-I. By bootstrapping, we validate
our information leakage results even when the true representative
websites are still unknown.

8 INFORMATION LEAKAGE IN WF DEFENSES
This section firstly gives the theoretical analysis on why accuracy
is not a reliable metric to validate a WF defense. Then we measure
the WF defenses’ information leakage to confirm the analysis. Note
that we choose the closed-world setting in the evaluation, as the
setting is most advantageous for attackers, and we can get an upper
bound for the defense’s security.

8.1 Accuracy and Information Leakage
The popular method to tell whether a WF defense is secure or not
is to look at the classification accuracy under different WF attacks.
If the defense is able to achieve low classification accuracy, it is
believed to be secure. Here, we raise the question: does low clas-
sification accuracy always mean low information leakage? This
question matters because if not, low classification accuracy would

10
−2

10
−1

10
0

1

2

3

4

5

6

7

Accuracy

In
fo

rm
a
ti
o
n
 L

e
a
k
a
g
e

CS−BuFLO

BuFLO WTF−PAD

Supersequence
(method 4)

Tamaraw

Supersequence
(method 3)

Figure 11: Website Fingerprinting Defenses: Accuracy vs. In-
formation Leakage. Upon each type of defensed traces, we evalu-
ate the overall information leakage and the classification accuracy
at the same time. The results demonstrate the discrepancy between
accuracy and information leakage

not be sufficient to validate a WF defense. To answer this question,
we analyze the relation between information leakage and accu-
racy. We find that given a specific accuracy, the actual information
leakage is far from certain.

Theorem 1. Let {c1, c2, · · · , cn } denote a set of websites with
prior probabilities p1,p2, · · · ,pn , and vi denote a visit to website
ci . Suppose a website fingerprinting classifier D which recognizes
a visit vi to be D (vi). The classifier would succeed if D (vi) = ci ,
otherwise it fails. Assume a defense has been applied, and this
classifier has α accuracy in classifying each website’s visits. Then
the information leakage obtained by the classifier is uncertain: the
range of the possible information leakage is

(1 − α)loд2 (n − 1) (3)

Proof: see Appendix B
The reason for such uncertainty is that classification accuracy is

"all-or-nothing". The classifier just makes one trial, and accuracy
counts a miss as failure. But even a miss doesn’t necessarily mean
no information leakage. It is possible that the attacker could make a
hit with the second or third trials, which indicates high information
leakage; it also possible that the attacker could not do so without
many trials, which equals to low information leakage. Accuracy
alone cannot tell which case is true, as a result, the information
leakage for a given accuracy is uncertain.

An Example. Figure 1 shows an example for the theorem. Note
that the range is invariable no matter what we assume for websites’
prior probability. We can see a wide range of possible information
leakage when a low accuracy is given, showing that low accuracy
doesn’t necessarily guarantee low information leakage.

8.2 Measurement Results for WF defenses
We include Tamaraw [6], BuFLO [11], Supersequence [46], WTF-
PAD [25], and CS-BuFLO [5] to quantify the information leakage
upon defensed traffic.

We adopt the implementation of BuFLO, Tamaraw, and Superse-
quence [2] to generate the defensed traffic, with τ =5, 10, 20, 30, 40,
50, 60, 80, 100, or 120 for BuFLO, L ranging from 10 to 100 with step
10 and from 200 to 1000 with step 100 for Tamaraw. We include the
method 3 of Supersequence, with 2, 5, or 10 super clusters, and 4,
8, or 12 stopping points. We also include the method 4 of Super-
sequence, with 2 super clusters, 4 stopping points, and 2, 4, 6, 8,
10, 20, 35, or 50 clusters. We use the implementation [1] to create
the WTF-PAD traffic. We were recommended to use the default
normal_rcv distributions on our dataset, as finding an optimal set
of distributions for a new dataset is currently a work in progress [1].
We apply the KNN classifier [46] on our WTF-PAD traces, and we
can get similar accuracy (18.03% in our case). This classification re-
sult validates ourWTF-PAD traces. We use the implementation [18]
to generate simulated CS-BuFLO traces.

Upon each type of defensed traces, we evaluate the overall in-
formation leakage and the classification accuracy at the same time.
The measurement is conducted in closed-world setting with 94 web-
sites. To evaluate the total information leakage, we assume equal
prior probability for websites and adopt k = 5000 for Monte Carlo
Evaluation. We use bootstrapping with 50 trials to estimate the 96%
confidence interval for the information leakage and accuracy. For
details about bootstrapping, please see Appendix A. Note that we
redo the dimension reductions for each defense, as a WF defense
changes the information leakage of a feature and the mutual in-
formation between any two features. The classifier we adopt is a
variant of the KNN classifier [46]. The only change we make is the
feature set: we use our own feature set instead of its original one.
The purpose is to have equivalent feature sets for classifications
and information leakage measurements. The reason for choosing
this KNN classifier is that it is one of the most popular website
fingerprinting classifiers to launch attacks and evaluate defense
mechanisms. It’s also worth noting that the original feature set of
the KNN classifier is a subset of our feature set. The experimental
results are shown in Figure 11.

8.3 Accuracy is inaccurate
Accuracy is widely used to compare the security of different de-
fenses. A defense mechanism is designed and tuned to satisfy a
lower accuracy as an evidence of superiority over existing de-
fenses [11]. With defense overhead being considered, new defense
mechanisms [6, 25] are sought and configured to lower the over-
head without sacrificing accuracy too much. But if accuracy fails
to be a reliable metric for security, it would become a pitfall and
mislead the design and deployment of defense mechanisms. This
section describes the flaws of accuracy and proves such a possibility.

Accuracy may fail because of its dependence on specific
classifiers. If a defense achieves low classification accuracy, it’s
not safe to conclude that this defense is secure, since the used clas-
sifiers may not be optimal. More powerful classifiers may exist
and output higher classification accuracy. We prove this possibil-
ity in our experiment. To validate WTF-PAD, four classifiers were
used including the original KNN classifier, and the reported highest
accuracy was 26%. But using the KNN classifier with our feature
set, we observe 33.99% accuracy. Recent work [42] even achieves
90% accuracy against WTF-PAD. This work also confirms our mea-
surement that the information leakage of WTF-PAD is high (6.4

bits), indicating that WTF-PAD is not secure. Thus, accuracy is not
reliable to validate a defense because of its dependence on specific
classifiers.

Defenses having equivalent accuracy may leak varying
amount of information. Figure 11 demonstrates such a phenom-
enon when taking BuFLO (τ = 40) and Tamaraw (L = 10) into
consideration. Accuracy of both defenses is nearly equivalent, with
9.39% for BuFLO and 9.68% for Tamaraw. In sense of accuracy, Bu-
FLO (τ = 40) was considered to be as secure as Tamaraw(L = 10).
However, our experimental results disapprove such a conclusion,
showing BuFLO (τ = 40) leaks 2.31 bits more information than
Tamaraw (which leaks 3.26 bits information). We observe the simi-
lar phenomenon between WTF-PAD and Supersequence.

More importantly, a defense believed to be more secure
by accuracy may leak more information. Take BuFLO (τ = 60)
as an example. Its accuracy is 7.39%, while accuracy of Tamaraw
with L = 10, 20, 30 is 9.68%, 9.15%, and 8.35% respectively. Accuracy
supports BuFLO (τ = 60) is more secure than Tamaraw with L =
10, 20, 30. However, our measurement shows that BuFLO (τ = 60)
leaks 4.56 bit information, 1.3 bit, 1.61 bit, and 1.75 bit more than
Tamaraw with L = 10, 20, 30! Take WTF-PAD as another example.
The accuracy for WTF-PAD is 33.99%, much lower than the 53.19%
accuracy of Supersequence method 4 with 2 super clusters, 50
clusters, and 4 stopping points. But the information leakage of
WTF-PAD is around 6.4 bits, much higher than the leakage of the
latter which is about 5.6 bits. Our experimental results prove the
unreliability of accuracy in comparing defenses by security.

9 OPEN-WORLD INFORMATION LEAKAGE
In the closed-world scenario, the attacker knows all possible web-
sites that a user may visit, and the goal is to decide which website
is visited; In the open-world setting, the attacker has a set of moni-
tored websites and tries to decide whether the monitored websites
are visited and which one. The difference in information leakage
is that the open-world has n + 1 possible outcomes, whereas the
closed-world has n outcomes where n is the number of (monitored)
websites. We include the details about how to quantify this informa-
tion in Appendix D. The following describes part of our results for
the open-world information leakage. For more information, please
visit our GitHub repository.

Experiment Setup. We adopt the list of monitored websites
from [46] and collected 17984 traffic instances in total. Our non-
monitored websites come from Alexa’s top 2000 with 137455 in-
stances in total. We approximate the websites’ prior probability by
Zipf law [4, 19], which enables us to estimate a website’s prior prob-
ability by its rank. We conduct experiments with top 500, 1000, 2000
non-monitored websites separately, and we show the experimental
results in Figure 12.

Figure 12 shows that the open-world information leakage is
decreased when including more non-monitored websites, with
1.82, 1.71, 1.62 bit for top500, top1000, top2000, respectively. In-
cluding more non-monitored websites decreases the entropy of
the open-world setting rather than increasing it. The reduced in-
formation is in part because of the prior on monitored websites.
Compared with closed-world setting with similar world size, open-
world scenario carries much less information.

Similar with the closed-world setting, Figure 12 shows that most
categories except First20, First30 and Last30 Packet count, and
Interval-I leak most of the information. This shows that the differ-
ence in world setting has little impact on categories’ capability in
leaking information.

We also investigate how the size of the non-monitored web-
sites influences our measurement. We focus on the total leakage
and build the AKDE models for the non-monitored websites with
the varying size of the non-monitored, respectively. We evaluate
how the difference of these AKDE models influences measurement.
Specifically, we evaluate (a) how monitored samples are evaluated
at these AKDE models, and (b) how samples generated by these
AKDE models are evaluated at the monitored AKDE. Figure 13
shows the results. Figure 13 (a) shows that these AKDE models of
the non-monitored, though differing in size, assign low probability
(below 10−10 with 95% percentile) to monitored samples. Figure 13
(b) shows that though these AKDE models for the non-monitored
generate different samples, the difference on how these samples are
evaluated by the AKDE model of the monitored is little: they are
all assigned low probability below 10−20 with 95% percentile. The
results lead to the estimation that introducing extra lower rank web-
sites into the non-monitored set would not significantly change the
low probability that the non-monitored AKDE assigns to monitored
samples, and the low probability that the monitored AKDE assigns
to samples generated by the non-monitored AKDE, thanks to the
low prior probability of these websites. The information leakage is
therefore little impacted.

10 DISCUSSION
WF Defense Evaluation. We have discussed why using accuracy
alone to validate a WF defense is flawed. Note that we don’t mean
that WF defense designers should keep away from accuracy. In fact,
accuracy is straightforward and easy to use, and it is suitable for the
initial check on WF defense design: if the classification accuracy
is high, then the defense design is not secure. But if the classifi-
cation accuracy is low, it doesn’t necessarily mean the defense is
secure. We recommend defense designers to include other meth-
ods to further validate the defense. A potential approach to use
is top-k accuracy, which allows WF attackers to make k guesses
instead of one, and if the k guesses contain the right one, then
the attackers succeed, otherwise, they lose. Another approach is
information leakage measurement tools such as WeFDE. WeFDE
gives information-theoretic perspective in evaluating WF defenses.
When evaluating a defense by a classifier, a test case unseen by the
training dataset is likely to be misclassified. But we can imagine
that enlarging the dataset would effectively avoid such misclassifi-
cation. This issue favors the defense design, and it is more likely to
happen in probabilistic defenses such as WTF-PAD. Using WeFDE
to evaluate a defense doesn’t have this problem, as all data points
are used to build the model for information leakage measurement.
In addition, WeFDE is independent from any classifier, and it avoids
the flaw of accuracy. The comparison of these approaches in vali-
dating WF defenses is out of the scope of this paper, and we leave
it in our future work.

WeFDE’s Other Applications.WeFDE can be used to launch
website fingerprinting attacks. WeFDE models the likelyhood func-
tion of website fingerprints, so that given a test case, WeFDE is

0 50 100
0

0.5

1

1.5

2

Total

top500

top1000

top2000

0 5
0

0.5

1

1.5

2

Pkt. Count

0 10 20
0

0.5

1

1.5

2

Time

0 50 100
0

0.5

1

1.5

2

Ngram

0 50 100
0

0.5

1

1.5

2

Transposition

0 50 100
0

0.5

1

1.5

2

Interval−I

In
fo

rm
a
ti

o
n

 L
e
a
k
a
g

e
 (

B
it

)

0 50 100
0

0.5

1

1.5

2

Interval−II

0 50 100
0

0.5

1

1.5

2

Interval−III

0 50 100
0

0.5

1

1.5

2

Pkt. Distribution

0 5 10
0

0.5

1

1.5

2

Burst

0 10 20
0

0.5

1

1.5

2

First20

0 1 2
0

0.5

1

1.5

2

First30 Pkt. Count

0 1 2
0

0.5

1

1.5

2

Last30 Pkt. Count

Number of Most Informative Features
0 50 100

0

0.5

1

1.5

2

Pkt. per Second

0 50
0

0.5

1

1.5

2

CUMUL

Figure 12: Open-World Setting: Information Leakage by Categories. This figure shows that the difference in world setting has little
impact on categories’ capability in leaking information

able to decide the probability of the test case being a visit to each
website. It could be further combined with prior information about
likely destinations to draw Bayesian inference [20].

WeFDE can be used to bootstrap a defense design. WeFDE can
tell defense designers the information leakage from features and
categories, so that designers could be guided to work on specific
highly informative features and categories for hiding. In addition,
when defenses are designed for a individual server or client to
adopt [9], WeFDE could suggest popular fingerprints to emulate.
In our future work, we will explore more about using WeFDE to
bootstrap a defense design.

Limitations. One limitation of WeFDE is its dependence on
the feature set. Though we try to include all known features to
generalize WeFDE’s results, unknown informative features may
exist and not be included. Fortunately, as long as new features are
discovered and reported by future studies, we can always update
our feature set and re-evaluate the leakage.

11 CONCLUSION
We develop a methodology and tools that allow measurement of
the information leaked by a website fingerprint. This gives us a
more fine-grained analysis of WF defense mechanisms than the
“all-or-nothing” approach based on evaluating specific classifiers.
By measuring defenses’ information leakage and their accuracy,
we find that using classification accuracy to validate a defense is
flawed.

500 1000 1500 2000
10

−50

10
−40

10
−30

10
−20

10
−10

Size for Non−Monitored Websites

P
ro

b
a
b

il
it

y

95% Percentile

85% Percentile

75% Percentile

Median

(a)

500 1000 1500 2000
10

−60

10
−50

10
−40

10
−30

10
−20

10
−10

Size for Non−Monitored Websites

P
ro

b
a

b
il

it
y

85% Percentile

Median

95% Percentile

75% Percentile

(b)

Figure 13: Size of the Non-Monitored Websites and Open-
World Information LeakageMeasurement: (a) Monitored Sam-
ples at Non-Monitored AKDE, and (b) Non-Monitored Samples at
Monitored AKDE

ACKNOWLEDGMENTS
We would like to thank Tao Wang, Marc Juarez, Michael Carl
Tschantz, Vern Paxson, George Karypis, Sheng Chen for the helpful
discussions which improved this paper. We thank Marc Juarez et al.
for helping us on Tor Browser Crawler. Shuai specially thanks his
wife Wen Xing for her support and valued encouragement in this
work. This paper is supported by NSF 1314637 and NSF 1815757.

REFERENCES
[1] https://github.com/wtfpad/wtfpad.
[2] https://www.cse.ust.hk/∼taow/wf.html.
[3] 2015. A Crawler based on Tor browser and Selenium. https://github.com/webfp/

tor-browser-crawler. (2015). Accessed: 2015-12-04.

https://github.com/webfp/tor-browser-crawler
https://github.com/webfp/tor-browser-crawler

[4] Lada A Adamic and Bernardo A Huberman. 2002. Zipf’s law and the Internet.
Glottometrics 3, 1 (2002), 143–150.

[5] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. CS-BuFLO: A Congestion
Sensitive Website Fingerprinting Defense. In Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2014).

[6] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. A Sys-
tematic Approach to Developing and EvaluatingWebsite Fingerprinting Defenses.
In Proceedings of the 21th ACM conference on Computer and Communications Se-
curity (CCS 2014).

[7] Xiang Cai, Xincheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching
from a Distance: Website Fingerprinting Attacks and Defenses. In Proceedings of
the 19th ACM conference on Computer and Communications Security (CCS 2012).

[8] Jie Cheng and Russell Greiner. 1999. Comparing Bayesian network classifiers.
In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence.
Morgan Kaufmann Publishers Inc., 101–108.

[9] Giovanni Cherubin, Jamie Hayes, and Marc Juarez. 2017. Website fingerprinting
defenses at the application layer. Proceedings on Privacy Enhancing Technologies
2017, 2 (2017), 186–203.

[10] Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. 2013. A tool for es-
timating information leakage. In International Conference on Computer Aided
Verification. Springer, 690–695.

[11] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-
a-Boo, I Still See You: Why Efficient Traffic Analysis Countermeasures Fail. In
Proceedings of the 2012 IEEE Symposium on Security and Privacy.

[12] Bradley Efron. 1992. Bootstrap methods: another look at the jackknife. In
Breakthroughs in Statistics. Springer, 569–593.

[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A density-
based algorithm for discovering clusters in large spatial databases with noise.. In
Kdd, Vol. 96. 226–231.

[14] Brian S Everitt. 1985. Mixture DistributionsâĂŤI. Wiley Online Library.
[15] Sylvia Frühwirth-Schnatter. 2006. Finite mixture and Markov switching models.

Springer Science & Business Media.
[16] Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. 2015. Efficient Estimation

of Mutual Information for Strongly Dependent Variables. CoRR abs/1411.2003
(2015).

[17] Zoubin Ghahramani and Carl E Rasmussen. 2002. Bayesian monte carlo. In
Advances in neural information processing systems. 489–496.

[18] Cherubin Giovanni. 2017. Bayes, not Naïve: Security Bounds on Website Finger-
printing Defenses. Proceedings on Privacy Enhancing Technologies 2017 (2017).
https://petsymposium.org/2017/papers/issue4/paper50-2017-4-source.pdf

[19] Benjamin Greschbach, Tobias Pulls, Laura M Roberts, Philipp Winter, and Nick
Feamster. 2017. The Effect of DNS on Tor’s Anonymity. (2017).

[20] Benjamin Greschbach, Tobias Pulls, Laura M. Roberts, Philipp Winter, and Nick
Feamster. 2017. The Effect of DNS on Tor’s Anonymity. In NDSS. The Internet
Society. https://nymity.ch/tor-dns/tor-dns.pdf

[21] W Keith Hastings. 1970. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika 57, 1 (1970), 97–109.

[22] Jamie Hayes and George Danezis. 2016. k-fingerprinting: A Robust Scalable
Website Fingerprinting Technique. In 25th USENIX Security Symposium (USENIX
Security 16). USENIX Association, Austin, TX, 1187–1203. https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/hayes

[23] Ian T Jolliffe. 1986. Principal Component Analysis and Factor Analysis. In
Principal component analysis. Springer, 115–128.

[24] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. A
Critical Evaluation of Website Fingerprinting Attacks. In Proceedings of the 21th
ACM conference on Computer and Communications Security (CCS 2014).

[25] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and MatthewWright. 2016.
Toward an efficient website fingerprinting defense. In European Symposium on
Research in Computer Security. Springer.

[26] Shiraj Khan, Sharba Bandyopadhyay, Auroop Ganguly, Sunil Saigal, David J Erick-
son, Vladimir Protopopescu, and George Ostrouchov. 2007. Relative performance
of mutual information estimationmethods for quantifying the dependence among
short and noisy data. 76 (09 2007), 026209.

[27] Igor Kononenko. 1991. Semi-naive Bayesian Classifier. In Proceedings of the
European Working Session on Learning on Machine Learning (EWSL-91). Springer-
Verlag New York, Inc., New York, NY, USA.

[28] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. 2004. Estimating
mutual information. Physical review E 69, 6 (2004), 066138.

[29] Tarald O Kvalseth. 1987. Entropy and correlation: Some comments. IEEE Trans-
actions on Systems, Man, and Cybernetics 17, 3 (1987), 517–519.

[30] Marc Liberatore and Brian Neil Levine. Inferring the Source of Encrypted HTTP
Connections. In Proceedings of the 13th ACM conference on Computer and Com-
munications Security (CCS 2006).

[31] David J. C. MacKay. 2002. Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA.

[32] Luke Mather and Elisabeth Oswald. 2012. Pinpointing side-channel information
leaks in web applications. Journal of Cryptographic Engineering (2012), 1–17.

[33] Rishab Nithyanand, Xiang Cai, and Rob Johnson. Glove: A Bespoke Website
Fingerprinting Defense. In Proceedings of the 12th Workshop on Privacy in the
Electronic Society (WPES).

[34] Andriy Panchenko, Fabian Lanze, Andreas Zinnen,Martin Henze, Jan Pennekamp,
Klaus Wehrle, and Thomas Engel. Website Fingerprinting at Internet Scale. In
Proceedings of the 23rd Internet Society (ISOC) Network and Distributed System
Security Symposium (NDSS 2016).

[35] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website
Fingerprinting in Onion Routing Based Anonymization Networks. In Proceedings
of the Workshop on Privacy in the Electronic Society (WPES 2011).

[36] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. 2011.
Website Fingerprinting in Onion Routing Based Anonymization Networks. In
Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2011).
ACM.

[37] Mike Perry. Experimental Defense for Website Traffic Fingerprinting. https:
//blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting

[38] D.N. Politis, J.P. Romano, and M. Wolf. 1999. Subsampling. Springer New York.
https://books.google.com/books?id=nGu6rqjE6JoC

[39] Murray Rosenblatt et al. 1956. Remarks on some nonparametric estimates of a
density function. The Annals of Mathematical Statistics 27, 3 (1956), 832–837.

[40] Yi Shi and Kanta Matsuura. 2009. Fingerprinting attack on the tor anonymity
system. In International Conference on Information and Communications Security.
Springer, 425–438.

[41] Shashank Singh and Barnabás Póczos. 2016. Analysis of k-Nearest Neighbor
Distances with Application to Entropy Estimation. arXiv preprint arXiv:1603.08578
(2016).

[42] P. Sirinam, M. Imani, M. Juarez, and M. Wright. 2018. Deep Fingerprinting:
Undermining Website Fingerprinting Defenses with Deep Learning. ArXiv e-
prints (Jan. 2018). arXiv:cs.CR/1801.02265

[43] Berwin A Turlach et al. 1993. Bandwidth selection in kernel density estimation: A
review. Université catholique de Louvain.

[44] Philippe Van Kerm et al. 2003. Adaptive kernel density estimation. The Stata
Journal 3, 2 (2003), 148–156.

[45] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2010. Information Theoretic
Measures for Clusterings Comparison: Variants, Properties, Normalization and
Correction for Chance. J. Mach. Learn. Res. 11 (Dec. 2010), 2837–2854. http:
//dl.acm.org/citation.cfm?id=1756006.1953024

[46] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. 2014.
Effective attacks and provable defenses for website fingerprinting. In Proc. 23th
USENIX Security Symposium (USENIX).

[47] Tao Wang and Ian Goldberg. Improved Website Fingerprinting on Tor. In Pro-
ceedings of the Workshop on Privacy in the Electronic Society (WPES 2013).

[48] Tao Wang and Ian Goldberg. 2017. Walkie-talkie: An effective and efficient defense
against website fingerprinting. Technical Report.

[49] Charles Wright, Scott Coull, and Fabian Monrose. Traffic Morphing: An efficient
defense against statistical traffic analysis. In Proceedings of the Network and
Distributed Security Symposium NDSS ’09.

A BOOTSTRAPPING: ACCURACY
ESTIMATION FOR INFORMATION
LEAKAGE QUANTIFICATION

Weuse bootstrapping [12] to estimate the accuracy of our information-
theoretic measurement. bootstrapping is a statistical technique
which uses random sampling with replacement to measure the
properties of an estimator.

We implement bootstrapping to estimate the confidence interval
of the information leakage. We describe our bootstrapping in the
following:

• Step 1: for the observations of the each website, we apply ran-
dom sampling with replacement, in which every observation
is equally likely to be drawed and is allowed to be drawed
more than once (with replacement). We let the sampling size
be equal to observation size.
• Step 2: we apply our measurement on the newly constructed
dataset of resamples and obtain the information leakage.
• Step 3: Step 1 and Step 2 are repeated K times to obtain K
values for the information leakage; We therefore find the CI
confidence interval based on these K values.

https://petsymposium.org/2017/papers/issue4/paper50-2017-4-source.pdf
https://nymity.ch/tor-dns/tor-dns.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://books.google.com/books?id=nGu6rqjE6JoC
http://arxiv.org/abs/cs.CR/1801.02265
http://dl.acm.org/citation.cfm?id=1756006.1953024
http://dl.acm.org/citation.cfm?id=1756006.1953024

Subsampling [38] is a special bootstrapping technique. It uses
sampling without replacement, and its sampling size is usually
much smaller than the observation size.

B PROOF OF THEOREM 1
Let I (D;V) denote the information leakage that the classifier attains.
we have

I (D;V) =H (D) − H (D |V)

=H (D) −
∑
vi ∈V

p (vi)H (D |vi) (4)

We then evaluateH (D |vi),vi ∈ V . With the accuracy α , we have
Pr (D = vi |vi) = α . However, it is uncertain about the probability
Pr (D = vj |vi) where j , i , from the knowledge of the accuracy. We
put the possibility in two extremes to obtain the range of possible
evaluation. In one case, suppose that the classifier determines vi to
be from the websiteC ĵ with probability 1−α , so that the maximum
of I (D;V) is obtained as

max{I (D;V)} = H (D) + α log2 α + (1 − α) log2 (1 − α) (5)

In the other case, suppose that the probabilities Pr (D = vj |vi) =
(1 − α)/(n − 1) where j , i , which means that except the correct
decision, the classifier determines the visit vi to belong to any
website other thanCi with equal probability. Such a case yields the
minimum possible information leakage, which is:

min{I (D;V)} = H (D) + α log2 α + (1 − α)loд2
1 − α
n − 1

(6)

As a result, the range of potential information leakage I (D;V)
conveyed by the accuracy α is

(1 − α)loд2 (n − 1) (7)

C ADAPTIVE KERNEL DENSITY ESTIMATE
IN WEFDE

This section gives details about Adaptive Kernel Density Estimate
(AKDE) and the bandwidth selection approaches in WeFDE.

We start by how WeFDE applies AKDE to estimate a single
feature’s probability distribution:

p̂(f̄ |c j) =
1
n

m∑
c=1

1
hc

K (
f̄ − pc
hc

) (8)

where
hc is the bandwidth in AKDE,
K (·) is the kernel function of a Gaussian, and
p1,p2, · · · ,pm are the observations for f̄ in visiting c j
Choosing proper bandwidths is important for AKDE to make

an accurate estimate. If a feature is continuous, WeFDE adopts
plug-in estimator[43]. In case of failure, we use the rule-of-thumb
approach [43] as the alternative. If the feature is discrete, we let
the bandwidth be a very small constant (0.001 in this paper). The
choice of the small constant has no impact on the measurement, as
long as each website uses the same constant as the bandwidth in
its AKDE.

Our AKDE may model a discrete feature as if it’s continuous.
The reason is that the domain of the feature f̄ could be very large

and requires much more samples than we can collect in order to
accurately estimate in discrete. Take total packet count of Face-
book.com as an example. We observe 238 different values from our
600 samples in the range of 576 and 1865. If the feature is processed
as discrete, the estimated probability for observed values would be
inaccurate, and the missed values would be considered impossible
in the inappropriate way. Our solution is to consider such a dis-
crete feature to be continuous, so that the kernels would smooth
the probability distribution estimation and assign an appropriate
probability to the missed values, making our measurement more
accurate.

Our AKDE is able to distinguish a continuous-like discrete fea-
ture. Take the feature of transmission time as an example. This
feature is used to be continuous, but when defenses such as Tama-
raw [6] are applied, the feature would become discrete. Our AKDE
is able to recognize by two approaches. The first approach is about
using a threshold β . If the same traffic instances are observed more
than β times in our dataset, these instances are distinguished as
discrete cases, and our AKDE would consider their features to be
discrete. The second approach is template matching used in BuFLO
case. We precompute a pattern of traffic believed to be discrete, and
we consider the instances matching the pattern as discrete as well.
In case of BuFLO, the pattern is the resulted traffic instance with
transmission time τ .

Moreover, our AKDE can handle a feature which is partly contin-
uous and partly discrete (or in other words, a mixture of continuous
and discrete random variables). Such features exist in a WF defense
such as BuFLO [11] which always sends at least T seconds. These
features would be discrete if the genuine traffic can be completed
within timeT , otherwise, the features would be continuous. Thanks
to AKDE which allows different observations to have their separate
bandwidths, we compute the bandwidths separately for discrete
and continuous feature values. According to [14, 15], AKDE is able
to model a feature with mixed nature by selecting adaptive band-
widths for its observations.

D INFORMATION LEAKAGE IN TWO
WORLDS

This section describes how to apply mutual information to quantify
the information leakage in the closed-world setting and the open-
world setting.

Closed-world Setting. Suppose C is a random variable denot-
ing possible websites that a user may visit. Then the information
leakage I (F ;C) in the closed-world scenario is:

I (C; F) = H (C) − H (C |F)

H (C) = −
∑
ci ∈C

Pr(ci) log2 Pr(ci)

H (C |F) =

∫
Φ
p (x)H (C |x)dx

(9)

where
Pr (ci) is the probability that the visited website is ci ,
Φ is the domain for the feature F , and
p (x) is the probability density function for variable x .

Open-world Setting. The information leakage I (F ;O) in the
open-world scenario is:

I (F ;O) = H (O) − H (O |F) (10)

H (O) = −
∑
ci ∈M

Pr(ci) log2 Pr(ci)

−




∑
c j ∈N

Pr(c j)



log2 {
∑
c j ∈N

Pr(c j)}
(11)

H (O |F) =

∫
F
p (f)H (O | f)d f (12)

H (O | f) = −
∑
ci ∈M

Pr(ci | f) log2 (Pr(ci | f))

−




∑
c j ∈N

Pr(c j | f)



log2 {
∑
c j ∈N

Pr(c j | f)}
(13)

where O is a random variable denoting the visited website be-
longs to the monitored or the non-monitored, and if it is monitored,
which one.M denotes the monitored set of websites, and N denotes
the non-monitored set of websites. F denotes the domain for feature
F .

E FEATURE SET
The following lists the 14 categories of features which are included
in the state-of-art attacks.

1. Packet count. Counting the number of packets is found helpful
for an attacker. Specifically, we include the following features based
on packet count: (a) the total packet count, (b) the count of outgoing
packets, (c) the count of incoming packets, (d) the ratio between
the incoming packet count and that of the total, and (e) the ratio
between the outgoing packet count and that of the total.

2. Time Statistics. Firstly, we look at the packet inter-arrival time
for the total, incoming, and outgoing streams, individually. We
extract the following statistics and add them into our feature set:
(a) maximum, (b) mean, (c) standard deviation, and (d) the third
quartile. Secondly, we embrace the features based on transmission
time. We add the first, second, third quartile and total transmission
time into our feature set.

3–4. Packet Ordering. we explore the n-gram features which are
widely adopted features extracting packet ordering. A n-gram is a
contiguous sequence of n packet lengths from a traffic sequence.
Let’s take 2-gram as an example. Suppose the traffic sequence is
⟨(l1, t1), (l2, t2), (l3, t3), (l4, t4)⟩, then the 2-grams are (l1, l2), (l2, l3)
and (l3, l4). We consider the frequencies of each grams as features
and we measure bigram, trigram, 4-gram, 5-gram, and 6-gram for
comparison.

In addition, the number of packets transmitted before each suc-
cessive incoming or outgoing packets also captures the ordering
of the packets. We record such features by scanning the first 300
packets of the incoming and those of the outgoing respectively.

5–7 and 9. Intervals and Bursts. We firstly adopt interval-based
features to capture the traffic bursts. An interval is defined as a

traffic window between a packet and the previous packet with the
same direction.

We use two approaches for interval-based features: Interval-
I [46] records the first 300 intervals of incoming packets and those of
the outgoing, Interval-II [40] uses a vector V in which V(i) records
the number of intervals with the packet number i . We use two
vectors to count the incoming and outgoing intervals separately,
and we fix the vectors’ dimension to be 300 (An interval having
more than 300 packets is counted as a interval with 300 packets). We
also apply grouping [36] on V to obtain extra features:

∑5
i=3 V(i),∑8

i=6 V(i), and
∑13
i=9 V(i). We name this approach to be Interval-III.

We also adopt [46]’s approach of counting the bursts for outgoing
packets. A burst of outgoing packets is defined as a sequence of
outgoing packets, in which there are no two adjacent incoming
packets. We extract the packet number in each burst and use the
maximum and the average as features. We also add the total burst
number, as well as the number of bursts with more than 5 packets,
10 packets, and 20 packets, respectively.

8. Packet Distribution. We divide the packet sequence into non-
overlapping chunks of 30 packets and count the number of outgoing
packets in first 200 chunks as features. We ignore the chunks after
the 200 chunks if any, and pad 0s to have 200 features in case of
having less than 200 chunks[46].

We also apply the approaches in [22] to have additional features:
(a) calculate the standard deviation, mean, median, and maximum
of the 200 features, and (b) split them into 20 evenly sized subsets
and sum each subset to be new features.

10–12. First 30 and Last 30 Packets.We explore the information
leakage from the first and last 30 packets. Particularly, we include
first 20 packets as features, and we extract the packet count features
(incoming packet count and outgoing packet count) from the first
and last 30 packets, respectively.

13. Packet count Per Second. We count the packet number in
every second. To make the feature number fixed, we count the first
100 seconds and pad 0s if the transmission time is less than 100
seconds. The standard deviation, mean, median, minimum, and
maximum of these features are also included.

We also include the alternative count of packets per second
features[22]. We split the packet count per second features into 20
evenly sized subsets and sum each subset to obtain the alternative
features.

14. CUMUL Features. Panchenko et al. [34] introduce the CUMUL
features. A cumulative representation is extracted from the packet
trace, and n features are derived by sampling the piecewise linear
interpolant of the representation at n equidistant points. We adopt
such features with n = 100.

It’s worth noting that “packet” here refers to a Tor cell packet.
We extract our features based on the cell packet traces. In addition,
in 2011 [36] includes a feature named HTML marker, which counts
the total size of incoming packets from the first outgoing packet
and the next outgoing packet. Such summation was considered to
be the size of the HTML document and therefore is informative. We
find such claim is not accurate anymore, and we find no updated
details of how to reproduce such a feature. As a result, we do not
include this feature in our measurement.

F WORLD SIZE AND INFORMATION
LEAKAGE

In this section, we discuss the impact of the world size on our
information leakage measurement.

We start with the closed-world setting. We observe that with
the increase of the world size, the information leakage for most
categories and the total increases as well, while the individual infor-
mation leakage of features is little impacted (particularly when the
world size increases from 1000 to 2000). To explain the conflicting
observations, we highlight the notion of maximum possible infor-
mation leakage of a setting. A feature (or a set of features) leaks
no more information than the information that the setting has. For
example, in our closed-world setting with 100 websites, the total
information leakage is 6.63 bits. But if we let the world size be 2, the
total leakage is no more than 1 bit, no matter how distinguishable
the fingerprint is. Therefore we argue that the increased informa-
tion leakage with larger world size for most categories and the
total is because the website fingerprint has the ability to leak more
information than the information that our closed-world settings
have. This phenomenon leads to an interesting question: what is
the maximum information leakage the website fingerprint is able
to leak in a sufficiently larger world size, which we include in our
future work.

For the features’ individual information leakage, we observe that
the leakage in each setting is much less than the information that
these setting have, and that the world size has little impact on the
measurement. We explain the reason for the little impact of the
world size by the following theorem:

Theorem 2. Let’s consider x closed-world settings with equal
world size n. Suppose a feature F = f̄ has valid information leakage
of I1, I2, · · · , Ix in each closed-world setting. In the combined closed-
world setting with nx world size, the information leakage of F = f̄

would be I1+I2+· · ·+Ix
x .

Proof: let’s denote the information leakage in each closed-world
setting to be:

Il = loд2 (n) +
∑

l ∈{1, · · · ,n }
ql (i)loд2 (ql (i)) (14)

, where ql (i) is the probability of visiting the ith website in the lth
closed-world setting conditioned on F = f̄ .

In the combined closed-world setting, the information leakage
of F = f̄ is

loд2 (nx) +
∑

l ∈{1, · · · ,x }
{
∑

i ∈{1, · · · ,n }

ql (i)

x
loд2 (

ql (i)

x
)}

= loд2 (n) +
1
x

∑
l ∈{1, · · · ,x }

∑
i ∈{1, · · · ,n }

ql (i)loд2 (ql (i))

=
I1 + I2 + · · · + Ix

x

(15)

This theorem reveals the relation between world size and infor-
mation leakage. With each closed-world setting including sufficient
websites, the combined larger world size would have little impact
on the information leakage.

We also evaluate world size impact on defenses in closed-world
setting. Figure 14 shows that in Tamaraw, world size has little

400 600 800 1000 1200 1400 1600 1800 2000
2

3

4

5

6

7

8

9

10

11

12

the Closed−world Size

T
o

ta
l
In

fo
rm

a
ti
o

n
 L

e
a

k
a

g
e

 (
b

it
)

Tamaraw (L=100)

Tamaraw (L=500)

Tamaraw (L=1000)

BuFLO (τ=20)

BuFLO (τ=60)

BuFLO (τ=120)

Upper Bound

Figure 14: Defenses with Different World Size.

impact on information leakage. No matter how large the world size
is, the information leakage for Tamaraw is around 3.3, 2.72, 2.45 bits
for L = 100, 500, 1000. BuFLOwith τ = 120 is not impacted by world
size, but BuFLO with τ = 20, 60 see the increase of information
leakage. The different impact from world size roots in BuFLO’s
mixed nature.

We discuss the world size impact on the open-world setting. Here
the world size refers to the size of the non-monitored websites. We
find that with a larger world size, the maximum information leakage
decreases. In addition, as is shown in Section 9, world size also has
little impact on the measure.

G MONTE CARLO INTEGRAL EVALUATION
We use the Monte Carlo method [17] to evaluate the integral when
measuring H (C | f̄). Monte Carlo picks random points in the do-
main and uses these points to numerically approximate the definite
integral:

H (C | f̄) ≃
1
k

k∑
i=1

H (C | f̄ (i)) (16)

where
f̄ (1) , f̄ (2) , · · · , f̄ (k) are the random samples, and
k is the size of the sample.

Note that we apply importance sampling here, in which random
samples are drawn from the distribution having probability density
function p (f̄). The sampling process is:
• Step 1: decide sampling size. To accurately evaluate the inte-
gral by Monte Carlo method, sufficent samples are needed. In
this paper, the total number of samples is set to be k = 5000.
For each condition c j , j ∈ {1, · · · ,n}, the number of samples
is k · Pr(c j).
• Step 2: sampling for different conditons. For each condition
c j , draw k · Pr(c j) samples from the distribution with condi-
tional PDF p (f̄ |c j).

We use this method to draw k samples from the generic PDF p (f̄).
We choose importance sampling over uniform domain sampling
(which would require a different estimation than Equation 16) since
it includes more samples for feature values that are more likely to
happen. The benefit is that the “important” values in the integration
are emphasized for higher precision.

	Abstract
	1 Introduction
	2 WF Attack Models
	3 Related Work
	4 Traffic and its features
	5 System Design
	5.1 Methodology
	5.2 System Overview
	5.3 Website Fingerprint Modeler
	5.4 Mutual Information Analyzer

	6 Closed-World Information Leakage
	7 Validation
	8 Information Leakage in WF Defenses
	8.1 Accuracy and Information Leakage
	8.2 Measurement Results for WF defenses
	8.3 Accuracy is inaccurate

	9 Open-world Information Leakage
	10 Discussion
	11 Conclusion
	Acknowledgments
	References
	A bootstrapping: accuracy estimation for information leakage quantification
	B Proof of Theorem 1
	C Adaptive Kernel Density Estimate in WeFDE
	D Information Leakage in Two Worlds
	E Feature Set
	F World Size and Information Leakage
	G Monte Carlo Integral Evaluation

