2 Schriften aus der Fakultdt Wirtschaftsinformatik und
Angewandte Informatik der Otto-Friedrich-Universitit Bamberg

Privacy-enhancing Technologies for

Private Services

von Karsten Loesing

B
Lo L
Q\\C U/V, o

UNIVERSITY OF
BAMBERG
PRESS

Schriften aus der Fakultit
Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universitit Bamberg

Schriften aus der Fakultit
Wirtschaftsinformatik und Angewandte Informatik

der Otto-Friedrich-Universitit Bamberg

Band 2

University of Bamberg Press 2009

Privacy-enhancing Technologies

for Private Services

von Karsten Loesing

University of Bamberg Press 2009

Bibliographische Information der Deutschen
Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese
Publikation in der Deutschen Nationalbibliographie;
detaillierte bibliographische Informationen sind im Internet
tiber http://dnb.ddb.de/ abrufbar.

Diese Arbeit hat der Fakultat Wirtschaftsinformatik und Angewandte Informatik der Otto-
Friedrich-Universitit als Dissertation vorgelegen.

1. Gutachter: Prof. Dr. Guido Wirtz

2. Gutachter: Prof. Dr. Udo Krieger

Tag der miindlichen Priifung: 24. April 2009

Dieses Werk ist als freie Onlineversion iiber den Hochschulschriften-Server
(OPUS; http://www.opus-bayern.de/uni-bamberg/) der Universitétsbibliothek
Bamberg erreichbar. Kopien und Ausdrucke diirfen nur zum privaten und
sonstigen eigenen Gebrauch angefertigt werden.

Herstellung und Druck: Digital Print Group, Erlangen
Umschlaggestaltung: Dezernat Kommunikation und Alumni, Teresa Zak
© University of Bamberg Press Bamberg 2009
http://www.uni-bamberg.de/ubp/

ISSN: 1867-7401
ISBN: 978-3-923507-45-0 (Druckausgabe)
URN: urn:nbn:de:bvb:473-opus-1832

To my parents Karin and Wiard

who always give me the safety
that they would catch me if I fell.

Acknowledgments

I want to thank my supervisor, Prof. Dr. Guido Wirtz, for supporting my
dissertation even at a time when privacy on the Internet is highly con-
troversial in the German public opinion—which is sad in its own way.
Thanks to Prof. Dr. Udo Krieger and Prof. Dr. Andreas Henrich for their
support as members of my dissertation committee. I am also indebted to
my colleagues Jens Bruhn and Sven Kaffille for uncountable discussions
and (hopefully) mutual motivation. Thanks to all students at the Univer-
sity of Bamberg who have contributed to my dissertation project by work-
ing on software projects or writing their theses on related subjects, includ-
ing Knut Hildebrandt, Christian Wilms, Maximilian Réglinger, Domenik
Bork, and J6rg Lenhard. Special thanks to my parents for continuous mo-
tivation and for proofreading the final manuscript. Also, I thank Annika
Putz for her useful comments on the draft of my thesis.

I further thank the people of the Tor project: Roger Dingledine for con-
tinuously discussing my ideas to change/improve Tor hidden services,
for keeping me motivated to continue my work, and for giving me very
helpful comments on the final draft of my thesis. Nick Mathewson for
reviewing my patches and giving me useful feedback to improve them;
Paul Syverson for giving me invaluable advice on a draft of this thesis;
Lasse @verlier and Steven J. Murdoch for various discussions on Tor hid-
den services; Peter Palfrader, Matt Edman, Andrew Lewman, and Jacob
Appelbaum for their support during Tor development and helping me se-
cure my Tor directory authority; Sebastian Hahn and Jens Kubieziel for
their feedback and corrections on one of the papers that is part of the con-

tribution of this thesis.

Zusammenfassung

Privatsphire im Internet wird immer wichtiger, da ein zunehmender Teil
des alltiglichen Lebens tiber das Internet stattfindet. Internet-Benutzer
verlieren die Fahigkeit zu steuern, welche Informationen sie tiber sich
weitergeben oder wissen nicht einmal, dass sie dieses tun. Datenschutz-
férdernde Techniken helfen dabei, private Informationen im Internet zu
kontrollieren, zum Beispiel durch die Anonymisierung von Internetkom-
munikation. Bis heute liegt der Fokus bei datenschutzférdernden Techni-
ken hauptsichlich auf dem Schutz von Anfragen an 6ffentliche Dienste.
Diese Arbeit wirft die Frage nach den Risiken beim Betrieb von Inter-
netdiensten durch Privatpersonen auf. Ein Beispiel hierfiir sind Instant-
Messaging-Systeme, die es ermoglichen, Anwesenheitsinformationen und
Textnachrichten in Echtzeit auszutauschen. Ublicherweise schiitzen diese
Systeme die Anwesenheitsinformationen, die auf zentralen Servern ge-
speichert werden, nicht besonders. Als Alternative verringern dezentrale
Instant-Messaging-Systeme dieses Problem, indem Privatpersonen sich
gegenseitig Dienste anbieten. Allerdings bringt das Anbieten eines Diens-
tes als Privatperson im Vergleich zu Organisationen oder Unternehmen
neue Sicherheitsprobleme mit sich: Erstens werden durch die Verfiigbar-
keit eines solchen Dienstes Informationen iiber die Prisenz des Dienstan-
bieters preisgegeben. Zweitens soll der Standort des Servers unerkannt
bleiben, um nicht den Aufenthaltsort des Dienstanbieters zu offenbaren.
Drittens muss der Server besonders vor unautorisierten Zugriffsversu-

chen geschiitzt werden.

Diese Arbeit schligt die Nutzung von pseudonymen Diensten als Bau-

stein von privaten Diensten vor. Pseudonyme Dienste verbergen den

X

Standort eines Servers, der einen bestimmten Dienst anbietet. Der hier
geleistete Beitrag soll herausfinden, welche Teile von pseudonymen Diens-
ten, besonders von Tor Hidden Services, fehlen, um sie fiir private Dienste
einzusetzen. Dies fithrt zu drei Hauptproblemen, zu denen Losungen vor-
geschlagen werden: Erstens skalieren bisherige Ansitze fiir pseudonyme
Dienste nicht fiir die in Zukunft zu erwartende Anzahl von privaten Diens-
ten. Diese Arbeit schligt einen neuen Ansatz vor, der Hidden-Service-
Beschreibungen in einer verteilten Datenstruktur ablegt, anstatt sie auf
zentralen Servern zu speichern. Ein besonderer Fokus liegt auf der Unter-
stiitzung von privaten Eintrigen, die fiir private Dienste benétigt werden.
Zweitens geben pseudonyme Dienste wihrend des Anbietens im Netz-
werk und der Verbindungsherstellung durch Clients zu viele Informatio-
nen iiber die Identitit des Dienstes preis. Der in dieser Arbeit verfolgte
Ansatz ist, die Informationen, die ein Dienst im Netzwerk bekanntgibt,
auf ein Minimum zu reduzieren und nicht-autorisierte Clients am Zugriff
auf den Dienst schon wihrend der Verbindungsherstellung zu hindern.
Diese Anderungen schiitzen die Aktivitit und das Nutzungsmuster des
Dienstes vor nicht-autorisierten Personen. Drittens weisen pseudonyme
Dienste eine schlechtere Effizienz auf als Dienste, auf die direkt zugegrif-
fen wird. Der Beitrag dieser Arbeit ist, die Effizienz zu messen, mégliche

Probleme zu identifizieren und Verbesserungen vorzuschlagen.

Summary

Privacy on the Internet is becoming more and more important, as an
increasing part of everyday life takes place over the Internet. Internet
users lose the ability to control which information they give away about
themselves or are even not aware that they do so. Privacy-enhancing tech-
nologies help control private information on the Internet, for example,
by anonymizing Internet communication. Up to now, work on privacy-
enhancing technologies has mainly focused on privacy of users request-
ing public services. This thesis introduces a new privacy risk that occurs
when private persons run their own services. One example is instant mes-
saging systems which allow users to exchange presence information and
text messages in real time. These systems usually do not provide protec-
tion of presence information which is stored on central servers. As an
alternative, decentralized instant messaging system designs mitigate this
problem by having private persons provide instant messaging services to
each other. However, providing a service as a private person causes new
security problems as compared to providing a service as an organization
or enterprise: First, the presence of such a service reveals information
about the availability of the service provider. Second, the server location
needs to be concealed in order to hide the whereabouts of a person. Third,
the server needs to be specifically protected from unauthorized access at-
tempts.

This thesis proposes to use pseudonymous services as a building block
for private services. Pseudonymous services conceal the location of a
server that provides a specific service. The contribution made here is to

analyze what parts of pseudonymous services, in particular Tor hidden

xii

services, are missing in order to apply them for private services. This
analysis leads to three main problems for which solutions are proposed:
First, known pseudonymous service designs do not scale to the expected
number of private services which might be provided in the future. This
thesis proposes a new approach to store hidden service descriptors in a
distributed data structure rather than on central servers. A particular fo-
cus lies on the support of private entries which are required for private ser-
vices. Second, pseudonymous services leak too much information about
service identity during advertisement in the network and connection es-
tablishment by clients. The approach taken in this thesis is to reduce the
information that a service publishes in the network to a minimum and
prevent unauthorized clients from accessing a service already during con-
nection establishment. These changes protect service activity and usage
patterns from non-authorized entities. Third, pseudonymous services ex-
hibit worse performance than direct service access. The contribution of
this thesis is to measure performance, identify possible problems, and

propose improvements.

Contents

1 Introduction

2 Background on Pseudonymous Services

2.1

2.2

2.3

Definition of Pseudonymous Services
2.1.1 Distributed Systems
2.1.2 Security Properties.
2.1.3 Properties of Privacy-Enhancing Technologies

2.1.4 Pseudonymous Services
Technologies for High-Latency Recipient Pseudonymity .
221 UsenetMessagePools
2.2.2 Pseudonymous Remailers
2.2.3 Reply-Block-Based Nymservers
2.2.4 Private Information Retrieval
225 Comparison
Technologies for Low-Latency Responder Pseudonymity .
231 ISDNMixes
23.2 OnionRouting
2.3.3 TAZ Servers and Rewebber Network
2.3.4 Pseudonymous IP Network

235 Tarzan e
23.6 I2P . ..
237 Tor e

238 Comparison

Xiv

3 Tor Hidden Services
3.1 CircuitCreation
3.2 Directory System L
3.3 Hidden Services
34 ThreatModel

4 Distributed Descriptor Storage
41 Requirements
4.2 Previous Work on Descriptor Storage.
4.3 Existing Tor Hidden Service Directory Design
4.4 Proposed Tor Hidden Service Directory Design
441 OVeIVIEW v v v v i it e
4.4.2 Distribution of Consistent Routing Information
4.43 Publication of Hidden Service Descriptors
4.4.4 Fetching Hidden Service Descriptors
4.5 Security Implications L.
46 Evaluation.
4.6.1 Network Characteristics
4.6.2 Descriptor Availability
4.7 Implementation

48 Conclusion

5 Client Authorization
5.1 Requirements
5.2 Existing Client Authorization Approaches
5.2.1 Single Servicefor Al Users
5.2.2 Separate Service For Each Client
5.2.3 Separate Service For Groups of Clients
5.2.4 Conclusions from Existing Approaches
5.3 Basic Pseudonymous Client Authorization Protocol

5.3.1 New Introduction Key for Introduction Points

45
45
49
51
54

57
58
59
61
64
66
67
69
73
73
77
77
82
92
98

101
102
103
104
105
106
107
107
108

5.3.2 Encryption of Introduction Points in Hidden Ser-

vice Descriptor L.

5.3.3 Client Authorization at Hidden Server

5.3.4 Summary of Basic Pseudonymous Client Autho-
rization Protocol L L.

5.4 Stealth Pseudonymous Client Authorization Protocol . . .
5.4.1 Client-specific Service Identities

5.4.2 Private Entries in Descriptor Directory

5.4.3 Encryption of Introduction Points

5.4.4 Delayed Descriptor Publication

545 Summary. oo

5.5 Security Analysis Lo
5.5.1 Access Service without Permission

5.5.2 Perform Denial-of-Service Attack

553 CensorService

5.5.4 Track Service Activity

5.5.5 TrackClientRequests

55,6 Summary.

Performance of Pseudonymous Services

6.1 MeasurementSetup

6.2 Service Publication
6.2.1 Measurements L
6.2.2 Improvements

6.3 Connection Establishment.
6.3.1 Measurements
6.3.2 Improvements

6.4 Conclusion

Xvi

7

8

A

Related Work

7.1 Private Hidden Services

7.2 Locating Hidden Servers

7.3 Attacks on Availability of Hidden Services
7.4 Applications Based on Hidden Services

Conclusion

Implementation

175
175
177
182
184

187

195

List of Tables

21

2.2

4.1
4.2

43
44
45
46
47

4.8

4.9

5.1

Comparison of high-latency designs to achieve recipient
pseudonymity
Comparison of low-latency designs supporting responder

pseudonymity

Hidden service descriptor format, version0
Hidden service requests per hour to Tor directory server
morial between May 1, 2007, 23:25 UTC and May 2, 2007,
2225UTC .« oo
Proposed hidden service descriptor format, version 2 . . .
Number of relays as a function of minimum uptime (h)
Join rate (%) as function of minimum uptime (h)
Leave rate (%) as function of minimum uptime (h)
Descriptor availabilities (%) depending on consensus com-
bination (1 to 9) with minimum relay uptime of 24 hours
Shares of unavailability (%) for different reasons with fixed
consensus combination 7 and minimum relay uptime of
24hours. L L
Descriptor availabilities (%) depending on minimum upti-

mes (h) for fixed consensus combination7

Encryption of introduction points for basic client autho-

rization protocol Lo Lo

29

42

63

64
69
79
81
82

87

89

90

xviii

5.2

6.1
6.2

6.3
6.4

6.5

6.6

6.7

Al

A2

A3

A4
A5

Evaluation of attacks on pseudonymous services perform-
ing client authorization and effectiveness of protections

againstthese 126

Measured service publication times (s) 141
Simulated establishment times for the first 3 out of n in-
troduction circuits L Lo 147
Measured connection establishment times (s) 153
Simulated introduction circuit opening times (s) for re-
duced timeouts (s) 166
Simulated introduction circuit opening attempts for reduced
timeouts (s) oo 167
Simulated introduction circuit opening times (s) for de-
layed parallel circuit establishment (s) 168
Simulated introduction circuit opening attempts for de-

layed parallel circuit establishment (s) 168

Features added to implement the distributed descriptor stor-

Bugfixes added while implementing the distributed direc-
torystorageo 197
Features added to implement client authorization 198
Bugfixes added while improving hidden service performance199
Features and subsequent bugfixes on them added to im-

prove hidden service performance 200

List of Figures

2.1
2.2

3.1
3.2
33

4.1

4.2

4.3

4.4
45
4.6

4.7

4.8

Sender-anonymous message delivery in a mixnet 23
Sender-anonymous reply delivery using an untraceable re-

turnaddress L L L L oL 24
Circuit creation and stream attachment 46
Creation and validity of a network status consensus (min) 50
Overview of the hidden service protocol 52
Hidden service requests per hour to Tor directory server

morial between May 1, 2007, 23:25 UTC and May 2, 2007,

2225 UTC . . . oo 65
Overview of distributed directory in the proposed directory
design 68
Example of distributed storage ring in the proposed direc-
torydesign 71

Total number of relays for different minimum relay uptimes 80
Churn rates as functions of minimum uptime 83
Example for determining descriptor availability using two
different network status consensuses 84
Possible combinations of consensuses used by hidden server
(dark gray) and client (lightgray) 85
Descriptor availability as a function of consensus combi-

Nnation e e e e e e 87

4.9 Descriptor availability in the period from Feb 14, 2008,
14:00 to 15:00 for consensus combination 7 and minimum

uptimeof24 hours Lo Lo 88
4.10 Descriptor availability as a function of minimum uptimes 90

4.11 Descriptor unavailability as a function of number of replicas 91

4.12 Configuration file of a hidden service directorynode ... 93
4.13 Server descriptor of a hidden service directorynode 94
4.14 Extract from network status consensus 95
4.15 Version 2 hidden service descriptor 97
4.16 Development of directory nodes from November 12, 2007

to November 30,2008 98
4.17 Requests processed by one directory node (per hour) be-

tween September 25 and October 1,2008 99
5.1 Configuration of client authorization using Vidalia 131
5.2 Configuration of access to hidden services using Vidalia . 132
6.1 Basic types of the PuppeTor API 137
6.2 Example application for measuring service publication times138
6.3 Log statements of publishing a service in the network . . 140
6.4 Measured service publication times 142

6.5 Components of service publication (x axes contain time (s),
yaxesfrequency)o o 143
6.6 Theoretical mean times before first descriptor upload (cir-

cles) as a function of stabilization time (dashed line) . .. 149

6.7 Theoretical number of uploaded descriptors (circles) as a
function of stabilization time with fixed lower bound of 1.0
upload (dashedline) 150

6.8 Total connection establishmenttime 154

6.9 Measured steps in connection establishment process . . . 155

6.10

6.11

6.12

6.13

6.14

6.15

Log statements of connection establishment as observed
onaclient. 156
Log statements of connection establishment as observed
onarendezvous point 157
Log statements of connection establishment as observed

on an introduction point 157
Log statements of connection establishment as observed
onahiddenserver L. 157
Components of connection establishment (x axes contain

time (s), y axes frequency) 158
Empirical cumulative distribution function of opening client-

side introduction circuits 165

1 Introduction

Privacy on the Internet is increasingly becoming a problem. People are
using the Internet for their everyday activities, but many do not realize
how much information they give away about themselves. Internet users
leave traces of every search for information, every email they send, every
forum entry they write, and so forth. Companies have long discovered the
value of private information for marketing purposes or to classify their
customers. Governments are just about to deploy systems to collect pri-
vate information to better control what their citizens are doing on the Net.
Privacy means that people are able to control which personal information
they give away and which not. Even though this property is often taken
for granted in everyday life, the Internet and its applications make it in-
creasingly harder to protect individual privacy.

The initial motivation for this thesis originates from privacy issues with
instant messaging systems. The basic operation of an instant messaging
system is to disseminate information about its users’ presence statuses
and permit exchange of text messages in real time. Both presence sta-
tus and text messages are privacy-relevant, but so far all approaches on
protecting instant messaging focus on privacy of text messages. As an ex-
ample, Off-The-Record messaging [5] extends existing instant messaging
systems by encrypting text messages from end to end. The approach does
not only conceal message contents, but ensures that contents of a com-
munication session are “off the record” in the sense that neither of the
participants can prove that any statement has been made by their com-

munication partner and not by themselves.

However, presence status information is certainly privacy-relevant, too.

2 Introduction

One can learn a lot about a person’s behavior from keeping track of her
presence status. On the one hand, this information needs to be given to
intended recipients. On the other hand, nobody else should learn about
a person’s presence status. What if an instant messaging protocol leaks
presence status to unauthorized entities? Does the system ensure that
users which are removed from the list of communication partners do not
learn about presence status anymore? Could the instant messaging ser-
vice providers record their users’ presence status and pass presence pro-
files on to third parties?

When looking at instant messaging systems, the main problem of pro-
tecting presence information results from their system architectures. Typ-
ically, users log in on central servers which provide them with presence
statuses of communication partners and announce to them when a user
has entered the system. With such a central component it is impossible
to guarantee that presence information is only given to intended recipi-
ents. In contrast to this, decentralized approaches based on peer-to-peer
designs are more likely to solve the given problem. In such a design, there
is little or no infrastructure, but users provide the instant messaging ser-
vice on their own. Unfortunately, a decentralized approach generates a
new problem: Users need to establish connections to each other in order
to exchange presence information or text messages. But as soon as users
reveal their IP addresses, their communication partners could exploit this
knowledge to derive private information about the user later on. Any fu-
ture communication that is directed to or originates from that IP address
leaks presence of the user.

The specific problem of privacy-aware instant messaging can be gener-
alized to all kinds of Internet services. In fact, any service which is pro-
vided by a private person has specific security requirements that exceed
those of usual Internet services. The problem is that the service might
reveal information about its provider which are private and shall therefore

be protected. This information includes the IP address of the computer

3

on which the service is provided: Anyone can look up in public databases
to which network an IP address belongs and where the user’s computer
is located. Guha and Francis [26] have successfully tracked locations of
people by observing changing IP addresses of services provided on lap-
tops. Further, anyone who knows the IP address of a service could try to
mount an attack on the service which the user’s computer is unlikely to
withstand. And finally, service activity might give hints on the presence
of the user. These hints can reveal personal behavior or the timezone in
which a person resides. Usually, private persons who provide an Internet
service on their computer do not wish to make it available to the public,
but only to a limited set of users. These requirements make it necessary to
protect the service from unauthorized access attempts. In the following, a
service that is provided by a private person rather than an organization is

referred to as a private service. The requirements to private services are:

o The location of the server providing a private service is not revealed.

o Service activity of a private service is only known to authorized

clients.

e Unauthorized clients cannot make any access attempts to a private

service.

An important part of the solution for the given problems are privacy-
enhancing technologies [20, 22, 24]. These technologies attempt to give back
control over private information to the private persons. An important part
of these technologies are anonymous communication networks which per-
mit users to communicate without revealing their IP address. In particu-
lar, anonymous communication networks enable their users to hide from
others to whom they send messages or from whom they receive replies.
These technologies are useful to request a service with potentially contro-
versial contents without anyone, including the service provider, knowing

who sent the request.

4 Introduction

A subset of anonymous communication systems also supports provid-
ing a service without anyone learning about the provider’s identity. These
services are accessed by a pseudonymous address which cannot be linked
to the IP address of the server providing the service. This feature is re-
ferred to as pseudonymous services. Hiding the location of a service is a
necessary prerequisite in the attempt to hide service activity and protect
a service from attacks. However, the current designs of pseudonymous
services are not sufficient to meet all security requirements of private ser-
vices. Even though the IP address of a pseudonymous service is hidden,
service activity is still leaked and services are still vulnerable to attacks.
Pseudonymous services have not been designed with the scenario of pri-

vate services in mind.

Contribution. The contribution of this thesis is to identify what parts of
pseudonymous services need to be extended in order to support private
services and to propose a working design for the necessary changes. A
comparison of pseudonymous service designs will reveal that Tor hidden
services [11] are a useful basis for these extensions. Tor is actively used
by hundreds of thousands users, has an active community, and the Tor
developers are open to discuss changes and accept patches if proven to be
useful.

Tor provides anonymity by relaying traffic over a series of nodes to
hide the relation between initiator and responder. The initiator there-
fore builds a circuit between her own computer and a series of usually
three Tor relays. All messages are encrypted in layers, so that none of
the relays can link message content to the initiator. Tor hidden services
make use of circuits to provide pseudonymous services. Besides, hidden
services promise to resist censorship and distributed denial-of-service at-
tacks. Hidden services are implemented by using a random Tor relay as
rendezvous point. Both initiator and responder build circuits to this rendez-

vous point in order to hide their own identity. Rendezvous points are only

5

used for a single connection between a client and a hidden server. In order
to accept client requests containing the address of a rendezvous point, a
hidden service picks a set of Tor relays as introduction points. These work
similarly to rendezvous points, but only transfer a single message con-
taining the connection request from client to hidden server. The hidden
server makes a hidden service available by publishing a hidden service de-
scriptor containing a signed list of introduction points. These descriptors
are stored on a set of directory servers from where they can be downloaded
by clients. Clients establish a connection by setting up a rendezvous point
and sending an introduction request to one of the service’s introduction
points. Upon receipt, the hidden server establishes the connection using
the specified rendezvous point.

Hidden services have not been designed for private services. There are
at least three problems of Tor hidden services which need to be improved:
First, the hidden service design does not scale to the expected number of
private services which might be provided in the future. Second, the hid-
den service protocol does not hide service availability or prevent unautho-
rized access attempts which are required for private services. And third,
performance of hidden services needs to be improved in order to become
more attractive for users, including applications that are based on private
services.

The first contribution of this thesis will be to make hidden services
more scalable. The current hidden service design is sufficient for a lim-
ited number of public services which are available most of the time. But
in contrast to public services, availability of private services is likely to
change, so that the services need to be made available quite often. These
new usage characteristics put significant load on the directory system. The
contribution of this thesis is a new approach to store hidden service de-
scriptors in a distributed data structure rather than on central servers. A
particular focus lies on the security properties of such a distributed ap-

proach and on the support of private entries which are required for private

6 Introduction

services.

The second contribution is to support client authorization as part of the
hidden service protocol. Tor hidden services leak information about the
pseudonymous identity of a service and propagate service activity to multi-
ple places in the Tor network. While this is acceptable for public services,
private services require activity to be hidden from anyone but authorized
clients. The approach taken in this thesis is to stop unauthorized connec-
tion requests as an integrated component of the hidden service protocol.
Unauthorized clients are not allowed to download a hidden service de-
scriptor or even learn about its existence.

The third contribution is to measure and improve performance of Tor
hidden services. Double indirection of requests by means of rendezvous
and introduction points results in significant delay during connection es-
tablishment. In addition to that, relaying messages over a series of relays
with possibly very different performance properties further increases the
delay. The contribution is to investigate what parts of the hidden service

protocol take most of the time and to propose improvements.

Dissertation Project. Special focus of this thesis is to present a practi-
cal design and evaluate it in a realistic environment. In addition to ana-
lyzing problems on a conceptual level and proposing a novel design that
overcomes these problems, certain efforts have been made to specify and
implement the necessary changes in the Tor software. Six proposals con-
taining Tor design changes [31,36-38,42,43] have been submitted and ac-
cepted by the Tor project. At the time of writing this thesis most of these
changes have been deployed in either stable or development versions of
the Tor software. This approach allows to integrate community feedback
as well as to evaluate the new designs on a wide scale.

During this dissertation project, a number of peer-reviewed conference
papers [39-41] and technical reports [12] have been published by the au-

thor in the immediate context of this thesis. The work has also been

7

discussed with the research community during short talks on PET 2007,
PET-CON 2007, 2008.1, and 2008.2, and a peer-reviewed talk on HOT-
PETs 2008 [45]. Two practicals with a total number of 16 students have
been held at the University of Bamberg in 2005 and 2007. Two diploma
theses [28,81] and one bachelor thesis [35] were written in the context of
this dissertation project between 2006 and 2008. Some part of the imple-
mentation is based on work created during the Google Summer of Code

2007 program!® and during a project funded by the NLnet foundation?.

Outline. The next two chapters cover the necessary background that is
required to understand the contribution of this thesis. Chapter 2 gives
an overview of pseudonymous services. First, some definitions are nec-
essary to obtain a common understanding what pseudonymous services
are. These definitions include terms from the areas of distributed sys-
tems, computer networks, cryptography, and privacy-enhancing technolo-
gies. After that, existing technologies are discussed which either support
pseudonymous services or which have contributed to the development
of later pseudonymous service designs. Chapter 3 gives more detailed
background on the design of Tor hidden services [11]. The chapter de-
scribes circuit creation, the directory system, the hidden service protocol,
and Tor’s threat model.

The following three chapters contain the contribution of this thesis as
described above. Chapter 4 describes the distributed descriptor storage,
Chapter 5 presents the extension of Tor hidden services towards client
authorization, and Chapter 6 covers performance measurements and im-

provements. It was attempted to write these three chapters so that they are

See the accepted project application: http://code.google.com/soc/2007/eff/
appinfo.html?csaid=33D2740B403CC323 (last checked: Dec 17, 2008)

See the project homepage: https://www.torproject.org/projects/hidserv.html
(last checked: Dec 17, 2008)

8 Introduction

self-contained and can be read independently. They only presume knowl-
edge of the background chapters. All three chapters start with a short
problem statement, discuss previous work on the topic, and present the
contribution including possible evaluations.

The last two chapters conclude the thesis. Chapter 7 describes work that
is related to the contribution. Related work includes approaches to make
Tor hidden services more private, various attacks on either revealing the
location of hidden services or making them unavailable, and proposed
applications based on hidden services. Finally, Chapter 8 concludes the

thesis and gives an outlook on future work.

2 Background on Pseudonymous Services

Pseudonymous services are, roughly speaking, services that are accessed
via an anonymous communication system using pseudonymous identi-
fiers rather than addresses that can be linked to the service provider. The
main intention of setting up a pseudonymous service is to protect the ser-
vice provider from being identified and made responsible for the provided
service. Pseudonymous services are an important building block for pri-
vate services as motivated in the last chapter. Hiding the location of a
private person’s computer that provides a service is the first step in hid-
ing the person’s activity and protecting the computer from attacks. This

chapter gives the necessary background on pseudonymous services.

The next section gives definitions of the properties of pseudonymous
services and related concepts. These definitions include terms from the
areas of distributed systems, computer networks, security and cryptogra-
phy, and privacy-enhancing technologies. These definitions help derive
a working definition for pseudonymous services that is used throughout
this thesis. In the subsequent two sections, existing technologies are dis-
cussed that either provide pseudonymous services or that made important
contributions to later designs which do provide this feature. In Section
2.2, technologies are presented that permit high-latency recipient pseudo-
nymity, that is, receiving messages using a pseudonym. These could be
considered to be the precursors of technologies providing pseudonymous
services. The major drawback for using these technologies for pseudo-
nymous services is their intended design to delay messages for hours to
prevent traffic analysis attacks. Section 2.3 contains low-latency designs

for servers making use of responder pseudonymity, that is, designs for

10 Background on Pseudonymous Services

pseudonymous services. Their low-latency properties allow the execution
of interactive services as they are required for private services. The dis-
cussion of technologies explicitly excludes designs to achieve anonymous
storage. These systems provide protection for users storing and retrieving
files, but do not support users in running interactive services. Goldberg
periodically publishes the state of the art of privacy-enhancing technolo-
gies for the Internet [20,22,24], including some of those designs that had

to be excluded here.

2.1 Definition of Pseudonymous Services

The discussion on background of pseudonymous services requires a few
definitions of necessary terms. First, a definition is given for services com-
ing from the areas of distributed systems and computer networks. Next,
some important security properties are defined that are common for ser-
vices being distributed over insecure networks in general. Finally, ano-
nymity and pseudonymity are defined as properties of privacy-enhancing

technologies.

2.1.1 Distributed Systems

The foundation for talking about pseudonymous services is the notion of
a service in the context of distributed systems. Coulouris and others [7]
define a distributed system “as one in which hardware or software compo-
nents located at networked computers communicate and coordinate their
actions only by passing messages.” The central point in their definition
is the necessity to pass messages over a computer network. As a result,
all systems that require only a single computer to execute are excluded
from the definition. The authors mention a number of consequences
that arise from their definition: First, a distributed system needs to cope
with concurrent program execution which is not necessarily the case in

non-distributed systems. Second, a distributed system does not have a

Definition of Pseudonymous Services 11

global clock that could be used to synchronize programs which are exe-
cuted on distinct networked computers. And third, each component of a
distributed system can fail independently, while other components keep
running. These limitations need to be taken into account when designing
applications for distributed systems.

The above definition does not motivate the reasons for building a dis-
tributed system in the first place. The authors give the main motivation
for building distributed systems and running distributed applications on
them separately: “The motivation for constructing and using distributed
systems stems from a desire to share resources.” These resources in-
clude both hardware resources, such as disks and printers, and software
resources, like files, databases and data of all kinds. In these cases, the
main focus of distribution is to access a remote resource to request in-
formation from it or change its state. When considering communication
applications, the notion of a resource could also be extended to retrieve
information about the presence state of a communication partner and the
ability to deliver messages.

Passing messages between networked computers may be the defining
element for distributed systems. But this definition is not sufficient to
describe how a distributed system works. The authors therefore use the
notion of a service as the means of sharing resources between networked
computers. The authors define the term service as “a distinct part of
a computer system that manages a collection of related resources and
presents their functionality to users and applications.” Presenting the
functionality of a service requires a defined interface containing a set of
permitted operations. In case of a networked service this interface is pro-
vided to other computers by means of exchanging messages. As a result,
the operations defined in a service interface constitute the only way of
accessing a resource and changing its state.

In the context of providing and accessing a service, there are usually two

roles involved: client and server. Tanenbaum and van Steen [78] define

12 Background on Pseudonymous Services

these two terms as follows: “A server is a process implementing a specific
service, for example, a file system service or a database service. A client
is a process that requests a service from a server by sending it a request
and subsequently waiting for the server’s reply.” This definition implies a
strict separation of the two roles of server and client with the server being
available all of the time whereas clients only need to be available while
requesting the service.

In contrast to this, Kurose and Ross [34] give a broader definition of
server and client that includes the development of peer-to-peer (P2P) ar-
chitectures: “In a client-server architecture, there is an always-on host,
called the server, which services requests from many other hosts, called
clients. [...] In a P2P architecture, there is minimal (or no) reliance on
always-on infrastructure servers. Instead the application exploits direct
communication between pairs of intermittently connected hosts, called
peers.” Peer-to-peer architectures do not distinguish as strictly between
the two roles of client and server. A peer can act as either client or server
depending on the communication context: “In the context of a communi-
cation session between a pair of processes, the process that initiates the
communication [...] is labeled as the client. The process that waits to be
contacted to begin the session is the server.”

In the context of this thesis, a private service is one that is provided by
a server which is owned by a private person. Usually, the computer that
runs the server is not dedicated to perform only this task, and therefore
the service is not necessarily available all the time. As a result, activity
of the service might correlate with the personal behavior of the service
provider.

The way how client and server exchange messages in order to imple-
ment and use a service is defined in a protocol. According to Kurose and
Ross [34], “a protocol defines the format and the order of messages ex-
changed between two or more communicating entities, as well as the

actions taken on the transmission and/or receipt of a message or other

Definition of Pseudonymous Services 13

event.” Schneier [71] further adds the requirement that a protocol must
be “designed to accomplish a task.” Protocols constitute a formalization
of the behavior of communicating entities to a level that allows evaluation

of the non-functional properties of a service including security properties.

2.1.2 Security Properties

The fact that clients and servers need to exchange messages over possi-
bly untrusted computer networks raises security concerns that need to be
addressed. Menezes and others [49] and Schneier [71] list four main infor-
mation security objectives: First, confidentiality ensures that the contents
of a message can only be understood by the intended receiver. Second,
data integrity addresses the unauthorized alteration of data, so that a mes-
sage cannot be modified in transit. Third, authentication denotes the abil-
ity of communicating parties to identify each other and prevents others
from impersonating a communicating party. And fourth, non-repudiation
means that an entity cannot deny previous commitments or actions after
providing or requesting a service.

The aforementioned security objectives can be achieved using cryptog-
raphy. The result is a cryptographic protocol that uses cryptographic algo-
rithms to ensure one or more of these security properties. Schneier sum-
marizes the purpose of using cryptography in protocols by saying that “it
should not be possible to do more or learn more than what is specified in
the protocol.”

There are a few building blocks for cryptographic protocols that need to
be introduced in brief by describing their basic properties.® The first build-
ing block are encryption algorithms. Symmetric encryption algorithms use
the same symmetric key for encrypting a plaintext as for decrypting the

ciphertext. Sender and receiver of the message need to agree on the sym-

3 See Menezes and others [49] or Schneier [71] for an in-depth description of the crypto-

graphic techniques.

14 Background on Pseudonymous Services

metric key before communicating in a secret way. A well-known symmet-
ric key algorithm that is used in this thesis is AES, the Advanced Encryp-
tion Standard [54].

In contrast to symmetric key cryptography, public-key cryptography uses
two different keys for encrypting and decrypting messages, one of them
public and the other one private. Anyone with the public key can encrypt
messages but not decrypt them. Only the person with the private key
can decrypt messages. An example of a public-key algorithm is RSA [69]
which is also used in this thesis. Another widely used public-key algo-
rithm is Diffie-Hellman [10] which is used by two communicating parties
to agree on a shared key by exchanging messages over a possibly untrusted
network. The shared key can then be used to perform symmetric key cryp-
tography.

Two more building blocks of cryptographic protocols are secure hash
functions and digital signatures. Schneier defines a secure hash function, or
one-way hash function, as “a hash function that works in one direction: It
is easy to compute a hash value from pre-image [the variable-length input
string; the author], but it is hard to generate a pre-image that hashes to a
particular value.” A common secure hash algorithm is SHA [55] which is
also used in this text. Digital signatures are used to assure to a recipient
that a given message has been created by the claimed sender. One way
to implement digital signatures is to invert the use of public and private
key of a public-key algorithm: The sender signs a message (or a secure
hash of it) with the private key, and other people can verify the signature
by using the public key of the sender.

One security property that cannot be solved with cryptography only is
availability, which is listed by Coulouris and others [7] as a main security
objective. Availability denotes protection against an adversary that tries to
make a resource or service unavailable. There are different ways how an
adversary could make a server unavailable: One way is to flood the service

with fake requests so that it becomes too busy to answer legitimate re-

Definition of Pseudonymous Services 15

quests, which is called a denial-of-service attack. Another way is to censor
an entry in a name system that clients need to resolve the service address

in order to request the service.

2.1.3 Properties of Privacy-Enhancing Technologies

The security properties above are widely accepted as protections of both
users and providers of services. However, apart from confidentiality, they
do not take into account privacy of either service users or providers. The
field of privacy-enhancing technologies addresses properties like anony-
mity or pseudonymity which can be seen as additional requirements to
services, exceeding the stated security properties.

Pfitzmann and Hansen [61] have established a terminology for proper-
ties of privacy-enhancing technologies, including anonymity and pseudo-
nymity. They assume a basic system model of senders sending messages
to recipients using a communication network. This model is similar to the
system model described above for the definition of distributed systems in
general. The authors give a first definition of anonymity: “Anonymity of a
subject means that the subject is not identifiable within a set of subjects,
the anonymity set.”

The authors further define anonymity in terms of unlinkability of items
of interest which can be messages or actions such as sending or receiving
a message: “Unlinkability of two or more items of interest [...] from an
attacker’s perspective means that within the system [...] the attacker can-
not sufficiently distinguish whether these items of interest are related or
not.” This definition leads the authors to definitions of anonymity for ei-
ther sender or recipient of a message as well as for the relation between
both: “Sender anonymity of a subject means that to this potentially sending
subject, each message is unlinkable. Correspondingly, recipient anonymity
of a subject means that to this potentially receiving subject, each message

is unlinkable. Relationship anonymity of a pair of subjects, the potentially

16 Background on Pseudonymous Services

sending subject and the potentially receiving subject, means that to this
potentially communicating pair of subjects, each message is unlinkable.”

The anonymity definitions can be transferred to the roles of client and
server. When considering a client sending a request to a server, the cli-
ent is referred to as sender and the server as recipient. But obviously,
for the response that a server sends to a client, this assignment changes.
Therefore, when talking about services, the terms initiator and responder
are used for client and server, as it is done, for example, by Dingledine
and others [11]. Hence, initiator anonymity comprises both sender ano-
nymity of a client sending messages to a server and recipient anonymity
for receiving replies. Likewise, responder anonymity denotes recipient ano-
nymity for receiving client requests and sender anonymity for sending
replies.

Pfitzmann and Hansen further give definitions for terms related to
pseudonymity: “A pseudonym is an identifier of a subject other than one of
the subject’s real names. [...] The subject which the pseudonym refers to
is the holder of the pseudonym. A subject is pseudonymous if a pseudonym
is used as identifier instead of one of its real names. [...] Pseudonymity
is the use of pseudonyms as identifiers.” The authors further define a
sender being pseudonymous as sender pseudonymity and a recipient being
pseudonymous as recipient pseudonymity. These definitions are extended
here to initiator pseudonymity for a client of a service being pseudonymous
and responder pseudonymity for a server being pseudonymous. In the con-
text of services, pseudonyms are always digital pseudonyms, that is, they
are unique as identifiers and suitable for authentication by using them to
create digital signatures.

When comparing the two states of a subject being either publicly identi-
fiable by real name or being completely anonymous, pseudonymity covers
all states in between. Pseudonymity comprises all degrees of linkability of
a pseudonym to a subject. Pfitzmann and Hansen mention two aspects

of linkability of pseudonyms: knowledge of the linking between a pseudo-

Definition of Pseudonymous Services 17

nym and its holder and linkability due to use of a pseudonym in different

contexts.

The knowledge of the linking between a pseudonym and its holder can
change over time. Pseudonyms can be initially unlinked, initially non-
public, or public from the beginning. The knowledge about a linking can
vary from person to person. Unless a pseudonym can be transferred to a
new holder (which is excluded by Pfitzmann and Hansen as well as in the
discussion here), knowledge of the linking can only increase. Anonymity
decreases with increasing knowledge of the linking of a pseudonym to its
holder.

The second aspect of linkability covers using a pseudonym in differ-
ent contexts. Pfitzmann and Hansen distinguish between person, role,
relationship, role-relationship, and transaction pseudonyms. A holder
using a pseudonym for all transactions uses it as a person pseudonym.
Holders may also decide to use a pseudonym for a certain role, like as
a company employee or as a private person, or for a relationship to an-
other subject. The holder may also combine both properties and use a
distinct pseudonym for a certain role and given relationship, thus using a
role-relationship pseudonym. A holder using a new pseudonym for each
performed transaction uses a transaction pseudonym, which is closest to
anonymity. Using the same pseudonym in different contexts allows es-
tablishment of a reputation linked to that pseudonym. But repeated use

also reduces the degree of anonymity that a pseudonym can provide.

A special case of linkability due to use of a pseudonym in different con-
texts can be seen for private services. A server that uses the same pseu-
donym over time to advertise its service allows others to derive service
activity. Whoever can link a pseudonym used by a server to its holder

might be able to derive activity of the person providing the service.

18 Background on Pseudonymous Services

2.1.4 Pseudonymous Services

Finally, these definitions suffice to give a definition for pseudonymous

services that is used in the following:

Pseudonymous services permit clients to request a service from a
server using a pseudonym that cannot be linked to the location of

the server or the identity of the service provider.

On the one hand, the pseudonym that is used by a server needs to be
persistent, so that clients can request the service using the same pseudo-
nym over time. On the other hand, the linking between the pseudonym
and its holder may not be known to anyone but the service provider. The
location of the server is explicitly included in the definition, because the
linking between the location of a computer, which is usually denoted by
its IP address, can be linked easily to a person’s identity by the person’s
Internet Service Provider.

The above definition does not prescribe specific security properties.
Typically, pseudonymous services should provide confidentiality, data in-
tegrity, and availability. It is also useful to have authentication and non-
repudiation of the server. In most cases, clients of a pseudonymous ser-
vice shall remain anonymous and therefore be able to deny previous re-
quests to the service. Depending on the purpose of a service, clients can
use pseudonymous, too, so that they are authenticated to the server and,
as a result, cannot deny previous requests.

The next two sections describe privacy-enhancing technologies which
either implement pseudonymous services or contain techniques that
could be used to do so. A basic distinguishing characteristic of these
technologies is whether they transmit messages with high or low latency.
High-latency anonymous communication systems are presented in Sec-

tion 2.2, whereas low-latency systems are discussed in Section 2.3.

Technologies for High-Latency Recipient Pseudonymity 19

2.2 Technologies for High-Latency Recipient Pseudonymity

High-latency anonymous communication systems permit their users to
exchange messages in an anonymous or pseudonymous way. Message
transmission times typically range from some hours up to one day. While
this may be acceptable for asynchronous applications like email, it is in-
sufficient for interactive services like web browsing. Nevertheless, many
of the principles behind high-latency anonymity systems have also been
applied to low-latency anonymous communication systems. Therefore, a
study of high-latency anonymous communication systems is compulsory
in order to understand the basic principles behind low-latency systems.

The literature on privacy-enhancing technologies contains a plethora
of high-latency anonymous communication systems. While the primary
function of these systems is to provide sender anonymity, only a small
percentage of them provides sender and/or recipient pseudonymity. The
focus here are systems and general principles to provide recipient pseu-
donymity: the required functionality is that a user Bob can establish a
long-term pseudonym to receive messages by a user Alice directed to his
pseudonym without anyone being able to link Bob’s pseudonym to his
real identity.

2.2.1 Usenet Message Pools

An obvious way to achieve recipient pseudonymity is to broadcast a mes-
sage to all pseudonym holders and let them find out themselves which
messages are directed to them and which are not. If all possible recipients
have successfully received a message, it is impossible for an external ob-
server to tell to which of them it was directed. If message contents shall
be kept confidential, messages can be encrypted for the holder of a recip-
ient pseudonym before broadcasting them. Encryption should not reveal
to whom a message is addressed except to the intended recipient. This

property is referred to as implicitly addressing the broadcasted message to

20 Background on Pseudonymous Services

the recipient.

A practical realization of the broadcast idea has been established in 1994
with the Usenet group alt.anonymous.messages. If Alice wants to send
a message to Bob, she (optionally) encrypts the message and posts it to this
newsgroup. Bob periodically downloads all messages and figures out for
every message whether he can decrypt them and whether they are directed
to him. The only step Bob needs to take to establish his pseudonymous
identity is telling it (possibly including an encryption key) to Alice.

On the one hand this approach provides for strong resistance against
linking a pseudonym to a recipient’s identity. But on the other hand there

are obvious scalability problems with this approach.

2.2.2 Pseudonymous Remailers

Pseudonymous remailers take a different, more efficient approach to
achieve recipient pseudonymity. The basic idea of a pseudonymous re-
mailer is to act as an intermediary between sender and recipient. A re-
mailer rewrites identifying message headers and forwards the message
to the recipient afterwards. A pseudonymous remailer further assigns a
pseudonymous identity to every user and keeps a local table containing
mappings of pseudonyms to user addresses. Whenever a sender directs
a message to a pseudonym, the remailer can look up the recipient’s real
address and forward the message accordingly. The best known pseudony-
mous remailer was the Penet remailer anon.penet.fi that was set up in
1993 and shut down in 1996. The design of the Penet remailer is unpub-
lished, but a good summary can be found in [60].

A user Bob who wants to create a long-term pseudonym sends an arbi-
trary initial message to the pseudonymous remailer that assigns a unique
pseudonym to Bob like an144108@anon.penet.fi. Bob tells his pseudo-
nym to Alice either by sending her a message via the remailer (with the

result that his pseudonym is included as sender address instead of his real

Technologies for High-Latency Recipient Pseudonymity 21

address) or makes it available to her otherwise. Alice who wants to send a
message to Bob simply directs it to his pseudonym, so that it gets routed to
the remailer anon.penet.fi. The remailer replaces the pseudonymous
message recipient with Bob’s real address and forwards the message to
Bob.

The simple design of pseudonymous remailers implies two major prob-
lems: The first is vulnerability to traffic analysis. The remailer does not
take precautions to hide the correlation between incoming and outgoing
messages. Outgoing messages have similar sizes as incoming messages
and are sent at a certain time after the incoming message was received.
Further, message contents remain roughly the same (besides removing
processing information where to forward the message). An adversary
with the ability to monitor traffic could easily link an incoming message
directed to a pseudonym to an outgoing message addressed to the pseu-

donym holder, thus uncovering recipient pseudonymity.

The second major problem is exposure to legal prosecution or hacking
attempts. The table containing the mapping between pseudonyms and
real addresses is the most sensitive part in the system to ensure recipient
(and sender) pseudonymity. Whoever knows this table can uncover pseu-
donymity of all recipients in the system. Users need to trust the remailer
operator in keeping this table secret and protecting it against hacker at-
tacks. Further, it puts the remailer operator at risk of having to disclose
the table for legal reasons which in the end was the reason for shutting

down anon.penet.fi.*

4 The press release announcing the closure of the Penet remailer can be found

under: http://w2.eff.org/Censorship/Foreign_and_local/Finland/960830_

penet_closure.announce (last checked: Dec 17, 2008)

22 Background on Pseudonymous Services
2.2.3 Reply-Block-Based Nymservers

The third approach to achieve high-latency recipient pseudonymity is
based on Chaum’s mix-net design [6]. The basic idea is to relay messages
over a chain of remailers with each of them performing cryptographic op-
erations on messages and relaying them in batches. The result is sender
anonymity unless an adversary can manage to compromise all remailers
in a chain. Chaum also proposed the concept of untraceable return address
(which will be referred to as reply blocks in the following text) to provide re-
cipient anonymity. When combining reply blocks with a nymserver (short
for pseudonym server), one can further achieve recipient pseudonymity.
The following discussion covers different approaches to achieve recip-
ient pseudonymity using reply blocks. Chaum’s mix-net design is de-
scribed next. While it does not include the description of a nymserver
itself, it constitutes the basis for the following approaches. After that, two
types of reply-block-based approaches are discussed: The first approach is
based on reusable reply blocks in the style of Chaum’s untraceable return
addresses. The second approach makes use of single-use reply blocks in

the attempt to better resist traffic analysis.

Mix Nets and Untraceable Return Addresses

In 1981, David Chaum described the concepts of a mix and a mix net [6].
The purpose of a mix is similar to that of a remailer: hide the correlation
between the sender of a message and its recipient. Only the mix itself
would be able to uncover this correlation. A mix net consists of multi-
ple mixes and allows its users to send messages via a cascade of mixes.
In this case all mixes would have to collude to link the original sender
of a message to the recipient. In addition to relaying messages, a mix
performs a couple of operations on relayed messages in order to prevent
traffic analysis: received messages are decrypted, padded to a uniform

length, reordered, and sent out in regular batches.

Technologies for High-Latency Recipient Pseudonymity 23

A M, M, B

Ev(Ag, B(... (Ay, Eo(Ap, M))...))
>»

Eo(... (Ay, Bo(Ap, M)) ..
>

E.(Ap, M)
—» M
—>>

Figure 2.1: Sender-anonymous message delivery in a mix net

If user Alice wants to anonymously send a message to user Bob, she
first needs to learn about the existing mixes’ addresses M; and their pub-
lic keys PK; as well as Bob’s address Ap. Alice prepares her message for
Bob by adding Bob’s address and encrypting her message for the last re-
mailer in the chain M,,. Next she adds the address of the last remailer A,
and encrypts the result for the last but one mix M,,_;. She subsequently
adds similar layers for the other mixes in reverse order from M,,_5 to M.
Finally, she can send the composed message to M;. The mixes M; all
perform the same task of decrypting the received message and forward-
ing the result to either the next mix in the chain or to Bob, respectively.
Figure 2.1 shows the exchanged messages of Alice anonymously sending

a message to Bob.

Chaum also proposed a similar technique for anonymously sending a
reply message back to the sender. An untraceable return address is con-
structed by the sender and made known to another user, possibly together
with a sender-anonymous message. The recipient then can reply to the
sender without knowing the sender’s real address. An untraceable return
address only contains the routing portion of a message while the mes-
sage content M is added later by the user who actually sends the reply.

Untraceable return addresses contain symmetric keys R; for all mixes on

24 Background on Pseudonymous Services

M M,

m

Ey(Ry, ...), Ki(EA(M))

<

Ep(Runy A), Knr (... K1 (Ea(M)))
<

K (K (.. Ky (Ea(M))))
€

Figure 2.2: Sender-anonymous reply delivery using an untraceable return

address

the path that are used to encrypt the reply, which differs from decrypting
forward messages using the private keys of the mixes. Figure 2.2 depicts
the sequence of exchanged messages that are necessary for Bob to reply
to Alice using a reply block.

Chaum’s design obeys an important limitation: a mix may not process
the same message twice. If this operation would be permitted, an adver-
sary could re-insert a message to a mix and find the next mix or the recip-
ient’s address in the intersection of both outgoing batches. Mixes ensure
replay protection by memorizing forwarded messages and dropping du-

plicates. As a result, untraceable return addresses can only be used once.

Cypherpunk-Style Nymservers

Cypherpunk remailers, as described by Goldberg in [24], were designed
to overcome the weaknesses of pseudonymous remailers as described in
Section 2.2.2 by applying (most of) the principles of Chaum’s mix nets.
Remailers shall not store any sensitive data about users or relayed mes-

sages that could be exploited by an attacker or required to be disclosed

Technologies for High-Latency Recipient Pseudonymity 25

due to legal pressure.

The basic function of a Cypherpunk remailer remains the one of strip-
ping headers from received messages and forwarding them afterwards.
In addition to that, Cypherpunk remailers recognize (but do not enforce)
a couple of commands while processing a message: Messages can be en-
crypted using the public key of a remailer, so that the remailer needs to
decrypt the message before further processing it. The sender of a message
can further specify a random or fixed time for which a message shall be
delayed before being forwarded. Further commands like these have been
introduced over time, but not all remailers are required to support them.

Besides sending forward-anonymous messages, Cypherpunk remailers
also support reply blocks to enable replies to anonymous messages. A
major difference to the original design of Chaum’s untraceable return ad-
dresses is that Cypherpunk remailers permit using reply blocks multiple
times.

Cypherpunk-style nymservers like nym.alias.net [47] further provide
recipient (and sender) pseudonymity. The idea is to combine the concepts
of a nymserver with reply blocks instead of real addresses. The nymserver
stores a table between pseudonyms and one or more reply blocks that can
be used to deliver a message to the pseudonym holder.

A user Bob who wants to create a long-term pseudonym first creates
an asymmetric key and a reply block directed to his real address.”> He
then deposits the public key, the reply block, and a chosen pseudonymous
identifier at the nymserver, using a remailer chain himself to hide his iden-
tity from the nymserver. Finally, Bob announces his pseudonym to other
users who might want to contact him.

If Alice wants to send a message to Bob, she addresses her message to

Alternatively, he can combine usage of reply blocks with the approach to direct messages
to a usegroup message pool as described in Section 2.2.1 and insert the address of a
Usenet group instead. Even if an attacker would reveal the destination of a reply block,

only the Usenet group would be revealed.

26 Background on Pseudonymous Services

Bob’s pseudonym at the nymserver, for example nymBOnym.alias.net.
The nymserver first ensures that the message is not a replay of a previous
message; if it is, the server drops the message. Otherwise, the nymserver
encrypts Alice’s message with Bob’s public key and forwards it together
with the stored reply block to the first remailer listed in Bob’s reply block.
The message is then delivered via the remailer chain like a usual reply
message. Upon receiving the message from the last remailer, Bob de-
crypts it successively using all symmetric keys that he included in the reply
block and finally with the private key of his pseudonym.

As an extension of the basic case described above, a user could also
deposit more than one reply block at the nymserver and define a rule
whether messages shall be sent using all or only a random subset of these
reply blocks. The additional paths can be used either to improve reliability
or to create cover traffic by creating reply blocks with long remailer chains
ending nowhere.

Cypherpunk-style remailers exhibit a couple of security problems as de-
scribed by Lance Cottrell.® Cypherpunk remailers do not take reasonable
precautions to prevent an adversary from associating incoming with out-
going messages. Message sizes are not unified and decrease after each
processing step due to either dropping an encryption layer or a reply block
layer. An adversary can further guess message correlations from the tim-
ing in which messages are received and forwarded to the next remailer.
The fact that reply blocks may be used repeatedly makes it possible for
an adversary to trace the path to a recipient by sending a large number of
messages.

Mixmaster remailers [50] solve most of these problems by adding mes-
sage padding and other features described by Chaum [6], including strict

prevention of replayed messages. Mixmaster remailers further perform
6 See the essay by Lance Cottrell on Mixmaster and remailer attacks: http://www.
obscura.com/alijloki/remailer/remailer-essay.html (last checked: Dec 17,
2008)

Technologies for High-Latency Recipient Pseudonymity 27

integrity checks of all messages to make sure that they have not been
modified. This integrity check, however, makes it impossible to construct
headers of reply messages without already knowing their content which
is added by the recipient. Consequently, the Mixmaster protocol does not
support recipient pseudonymity.

The Babel [27] design contains a slight but noteworthy modification of
reply blocks by including a key seed in reply blocks that is encrypted for the
creator of the reply block. This key seed is used to derive all symmetric
keys for the return path. The advantage is that the sender does not have
to remember the keys of a reply block in order to process a reply, but
can reconstruct them using the enclosed key seed. This modification of
Cypherpunk-style reply blocks allows the sender to remain stateless with

respect to outstanding replies.

Mixminion-Style Nymservers

The Mixminion system [8, 46] changes the design of reply blocks by re-
stricting them to be used only a single time. Single-use reply blocks are
not exposed to replay attacks, because Mixminion remailers detect replays
for both forward and reply messages. Another feature of reply blocks in
Mixminion is that reply messages that are sent using a reply block are in-
distinguishable from usual forward messages, even to the forwarding re-
mailer. Since replies are rare in number compared to forward messages,
this makes it even harder for an adversary to trace a reply message.
Accordingly, Mixminion-style nymservers are designed to handle
single-use reply blocks for a given pseudonym. The Mixminion design-
ers [8] proposes two approaches for nymservers based on single-use reply
blocks. The first approach assumes that a pseudonymous user deposits
a sufficient number of reply blocks on a nymserver, so that all incoming
messages can be delivered. Whenever the number of reply blocks stored at

the nymserver decreases, the user would have to upload new ones to keep

28 Background on Pseudonymous Services

his pseudonym operational. The main disadvantage of this approach is
that an attacker can deny service by flooding any pseudonym to consume
all stored reply blocks and make further message delivery impossible.
The second nymserver approach in Mixminion resembles a mailbox
design. The nymserver stores all received messages in the first instance
(possibly encrypting them upon reception to lower the risk of disclosure).
A user periodically queries the mailbox for newly received messages and
supplies an appropriate number of reply blocks, so that the nymserver can
deliver the messages. A disadvantage of this approach is that the nym-
server needs to store user messages potentially for a long time, which

might have legal and security implications.

2.2.4 Private Information Retrieval

The Pynchon Gate [70] constitutes a rather different approach to recipi-
ent pseudonymity. Instead of delivering messages to recipients over a re-
mailer network that supports reply messages, the Pynchon Gate makes
use of private information retrieval techniques. The system processes
received messages in daily batches and makes them available in an en-
crypted and specifically indexed way to all possible recipients. Clients re-
quest a subset of all messages following a schema that does not permit an
observer to determine the pseudonym the recipient is using and signifi-
cantly reduces the overhead as compared to downloading all messages.
The Pynchon Gate system consists of a central component that pro-
cesses incoming messages with the two subcomponents of a nymserver
and a collator. The nymserver encrypts incoming messages for the recipi-
ents as soon as they arrive and passes a batch of all messages to the collator
once every day. The collator packages them into an indexed bucket pool
and replicates the index and all messages to a set of independently op-
erated distributor nodes. The pseudonym holders first download the com-

plete index to calculate which buckets hold their messages and then re-

Technologies for High-Latency Recipient Pseudonymity 29

Table 2.1: Comparison of high-latency designs to achieve recipient pseu-

donymity

Usenet Penet Cypher- Mix- PIR

punk minion

No single point of trust D S] 52 2] @
Traffic analysis resistance D S] S] 52 52
Usability for pseudonym holder e @ o o (S)
Usability for sender © @ @ 52 52

trieve their buckets using private information retrieval. Therefore, they
send k requests to different distributor nodes for each bucket they want to
retrieve in a way that the bucket content can be obtained by combining all
k results. However, an observer that sees only k£ — 1 requests cannot de-
rive the bucket that a nym owner was asking for. Users always request the
same number of buckets to conceal the number of messages they actually
receive.

One disadvantage of this approach is that pseudonym holders need to
download a volume of messages of the maximum receivable size every
cycle, regardless of the fact whether they receive any message at all. Users

need to estimate the volume of messages they typically receive in advance.

2.2.5 Comparison

Despite their different approaches, all presented designs can be used to
achieve high-latency recipient pseudonymity. However, the approaches
differ in certain criteria like security properties, efficiency, and usability.
The approaches are compared with respect to these criteria in Table 2.1.
The first criterion is having no single point of trust. Systems that depend
on one or a few single points of trust for meeting security properties like
pseudonymity are vulnerable to threats like legal pressure and hacking

attempts. Only the Penet pseudonymous remailer is attackable in this

30 Background on Pseudonymous Services

regard which finally led to termination of its service. In the other systems
there is no single point that knows about the link between a pseudonym
and the real identity of its holder, thus providing better protection.

The second criterion is resistance against traffic analysis. An adversary
who can keep track of a message in a system by comparing message sizes
and timings might be able to link a pseudonym to its holder. The Penet
pseudonymous remailer does not take special precautions to impede traf-
fic analysis and is thereby vulnerable to traffic analysis. The Cypherpunk
pseudonymous remailer introduces a few countermeasures against traffic
analysis, but does not enforce them. Further, the fact that reply blocks
may be used multiple times defeats this protection. Mixminion imple-
ments effective countermeasures against traffic analysis including indis-
tinguishability of forward and reply messages. Usenet message pools and
Private Information Retrieval make traffic analysis attacks very hard, be-
cause messages addressed to a recipient are hidden in larger message sets
that a recipient downloads regularly from the system.

Usability of pseudonym holders is another criterion when comparing the
approaches. Pseudonym holders in the Usenet-based approach and in
the Private Information Retrieval system need to periodically download
a possibly large number of messages in order to determine whether any
of them is addressed to them or not. Mixminion requires pseudonym
holders to provide enough single-use reply blocks to receive messages ad-
dressed to them which requires special software. Establishing a recipient
pseudonym in the Cypherpunk remailer either requires a couple of man-
ual steps or special software, too. Only the Penet makes registration of a
new recipient pseudonym a simple task that only requires sending a sin-
gle mail to the nymserver. Incoming messages for the pseudonym are
forwarded to the real address of the recipient.

Usability is also a factor when considering the sender of a message.
In the Usenet approach users need to prepare messages by encrypting

them for pseudonymous recipients, possibly using special software. In

Technologies for Low-Latency Responder Pseudonymity 31

the other approaches this is not necessary, so that messages can simply
be addressed to special pseudonyms and are delivered by the pseudony-

mous communication system to the intended recipients.

2.3 Technologies for Low-Latency Responder Pseudonymity

A characteristic feature of most high-latency anonymous communication
systems is the introduction of artificial delays to defeat traffic analysis. In
contrast to this, low-latency anonymous communication systems do not
introduce any delays artificially, but focus on fast transmission of mes-
sages. As a result, interactive protocols can be executed on top of the ano-
nymous communication system. As with high-latency systems, there are
different designs to provide anonymity or pseudonymity in a low-latency
system. The following description focuses on approaches that support
responder pseudonymity (rather than only recipient pseudonymity) with
a long-term pseudonym which is a necessary prerequisite to implement

pseudonymous services.

2.3.1 ISDN Mixes

Pfitzmann and others [62] presented in 1991 the first design for a low-
latency anonymous communication system supporting responder pseu-
donymity. The purpose was to provide untraceable communication in the
digital telephony network ISDN with the bandwidth restriction of using
only two duplex data channels and one signalling channel.

The main goal of the approach was to create a mix channel transmitting
a continuous stream of data from initiator to responder with almost no
delay and without anyone being able to trace either initiator or responder.
The basic building block to transmit data is an ISDN mix that is a variant
of Chaum’s mix [6], but that processes data in real-time. Therefore, the
initiator prepares a message for a mix cascade M; to M,, by encrypting

it multiple times to the public keys of all mixes in reverse order. Every

32 Background on Pseudonymous Services

layer of encryption contains a symmetric decryption key k; that is used by
the corresponding mix M; to decrypt succeeding stream data. After es-
tablishing such a mix sending channel, the initiator can send a data stream
which is encrypted multiple times to the first mix which is then decrypted
by every mix using the appropriate secret key ;.

Likewise, participants create such channels to receive stream data in-
stead of sending it. Therefore, a participant sends an establishment mes-
sage to a series of mixes containing symmetric encryption keys k.. In this
case unencrypted stream data is provided to the last mix M,, and encrypted
by every mix in the cascade until it is delivered to the participant. This
concept of a mix receiving channel bears resemblance to untraceable re-
turn addresses as presented in Section 2.2.3, however, with the difference
that participants establish receiving channels themselves instead of giving
out information for how to establish them to others.

So far it is only possible to create sending and receiving channels. What
is still missing is a way to connect two channels to transfer user data from
an initiator to a responder. Therefore, two participants agree on a com-
mon label that they include in their mix-channel establishment messages
and that is processed by the last mix M,, to connect the two channels. The
initiator creates such a label and broadcasts it to all possible responders us-
ing a sending channel.” The broadcasted message is implicitly addressed
to the responder, so that the responder can cryptographically determine
that the message is addressed to him and read the label, while the mes-
sage is incomprehensible for other participants. Initiator and responder
of this broadcast message use the label to create a sending and receiving
mix channel, respectively, and the last mix M,, connects them.

Even though some ideas of this approach could be applied to Internet

services, there is a major assumption that is specific to circuit-switched

7" The approach provides for a hierarchical network, so that these messages would in fact

be broadcasted to a certain number of participants only.

Technologies for Low-Latency Responder Pseudonymity 33

telephony networks: users have a fixed amount of bandwidth at hand. On
the one hand, this bandwidth can never be exceeded, so that resources
need to be released as quickly as possible. But on the other hand, unused
bandwidth can be used for continuously sending cover traffic which is of-
ten too expensive in packet-switched networks like the Internet. Further,
the requirement to send and receive broadcast messages is unrealistic on

an Internet scale, even when being performed in a hierarchical fashion.

2.3.2 Onion Routing

The first Onion Routing design [25, 67] was proposed in 1996 and pro-
vides anonymity for the communication partners of Internet services like
the World Wide Web and Telnet. Onion routing is based on a possibly
large number of routing nodes. In order to establish an anonymous con-
nection, the initiator selects a series of routing nodes and creates an onion
which encapsulates that route. The onion contains encrypted layers for the
routing nodes in the path, including secret decryption/encryption keys for
each routing node. The initiator sends the onion along the selected route,
thus establishing a virtual circuit beginning at the initiator and ending at
the last routing node. The routing nodes store the state of a virtual circuit
and process data going in either forward or backward direction by decrypt-
ing/encrypting it and forwarding it to either the next or previous routing
node in the path. The routing nodes further make sure that onions are
not used more than once by checking their timestamp to see if they are
still valid and by memorizing processed onions until they expire.

The design also introduces the concept of reply onions which can be
used by any participant to create a virtual circuit to the creator of the reply
onion. The idea of reply onions resembles the concept of untraceable
return addresses in as much as they permit a responder to create a virtual
circuit back to an anonymous initiator. Just like normal onions, reply

onions contain a pre-defined path of router nodes and include all routing

34 Background on Pseudonymous Services

information and cryptographic keys, encrypted in layers, that is necessary
to build the virtual circuit. Reply onions may only be used once, too, which

is ensured by the routing nodes.

Reply onions can be used in different ways to achieve responder pseu-
donymity. The typical way is to include a reply onion in the data stream
of an initiator-anonymous connection, so that the responder can contact
the initiator after the virtual circuit has been torn down. A participant
could also broadcast reply onions which could then be used anonymously
by other participants to establish a virtual circuit to the first participant. In
addition to that, the authors [25] briefly mention two more approaches to
create a completely anonymous connection between two parties that are
based on the concept of an anonymity server. In the first approach two
participants create virtual circuits to the same anonymity server that con-
nects the two circuits using a shared token. In the second approach one
participant creates a virtual circuit to an anonymity server and requests it
to create a connection to another participant using a provided reply on-
ion. The results of both approaches would be that the identities of both
participants are protected by a virtual circuit that they have determined

themselves.

Unfortunately, the usefulness of reply onions to implement long-term
responder pseudonyms is limited. First, reply onions can only be used
once by design. Second, validity of reply onions needs to be restricted in
order to limit the amount of storage that is necessary to memorize previ-
ously processed reply onions. Third, using a reply onion requires all rout-
ing nodes that were picked during the creation process to be still available
at the time of building the virtual circuit. Nevertheless, reply onions con-

stitute an important step in the development of responder pseudonymity.

Technologies for Low-Latency Responder Pseudonymity 35
2.3.3 TAZ Servers and Rewebber Network

TAZ servers® and the Rewebber Network [23] were proposed in 1998 by
Goldberg and Wagner as a means for anonymous publication on the
World Wide Web. Rewebbers are HTTP proxies that understand so-called
rewebber locators that basically resemble the concept of untraceable return
addresses: rewebber locators consist of a rewebber address and an en-
crypted string possibly containing another nested rewebber locator.
Clients use rewebber locators to request documents from servers that
wish to remain anonymous by sending them to the first rewebber. Af-
ter decrypting the encrypted URL part, the rewebber forwards the loca-
tor to the next rewebber until it finally reaches the real web server which
originally created the rewebber locator. The webserver responds with a
document which is encrypted multiple times and passed back to the cli-
ent. Each rewebber on the way removes one layer of encryption, so that
the client receives the plain document as response to the original request.
The result of this approach is that only the rewebber closest to the client
sees decrypted data whereas only the rewebber closest to the server learns
where these data originate from.

The proposed design further contains the concept of TAZ servers to
achieve pseudonymous publication on the World Wide Web using short
persistent names. TAZ servers store mappings of persistent domain
names in the virtual .taz domain to rewebber locators. This way clients
do not need to remember the rather cumbersome rewebber locators, but
a much shorter .taz domain name. Further, if a rewebber locator needs to
be replaced, the server does not need to inform all clients, but only update
the mapping at the TAZ server. As a safeguard to impersonation attacks
on existing .taz servers, the TAZ server may store a password hash to au-

thenticate updates. TAZ servers do not, however, provide authenticity of

8 TAZ stands for Temporary Autonomous Zone which is inspired from the book T.A.Z.: The

Temporary Autonomous Zone, Ontological Anarchy, Poetic Terrorism by Hakim Bey.

36 Background on Pseudonymous Services

stored entries with regard to the person or organization running the web-
server. The authors state that clients and servers should rely on end-to-end
authentication by signing all anonymous documents using a private key
and distributing the public key together with the .taz domain name.

The main problem of this approach is that rewebber locators can be
used multiple times; while caching at the rewebbers reduces the number
of requests that need to traverse the complete path, the general problem of
traceability remains. Another minor weakness of the design of TAZ serv-
ers is missing authenticity of .taz domain names: a client that requests
a resource from a trusted .taz service and obtains a rewebber locator for
that resource from a TAZ server needs to download the resource first be-
fore being able to authenticate its origin; it would be desirable to perform

authentication before actually performing the request.

2.3.4 Pseudonymous IP Network

The Pseudonymous IP (PIP) Network [19] as proposed by Goldberg in
2000 provides anonymity and pseudonymity for clients and pseudonymity
for servers of Internet services. The central concept to achieve anonymity
for clients is the IP wormhole. An IP wormbhole enables a client to anony-
mously exchange IP packets with an Anonymous Internet Proxy which is
part of the PIP network. Roughly speaking, IP wormholes work similarly
to virtual circuits in the Onion Routing [25] design, but on the IP level
rather than on the TCP level; the differences between the two concepts
do not affect the way of providing pseudonymity for servers as discussed
here.

The design contains the concept of a rendezvous server that can, but does
not need to be part of the PIP network. A service provider registers his ser-
vice using an IP wormhole at a rendezvous service under an arbitrary ser-
vice tag; while the only requirement to the service tag is that it is unique, it

may also be the hash of a public key that is used by the rendezvous server

Technologies for Low-Latency Responder Pseudonymity 37

to authenticate the message as originating from the owner of the private
key. In consequence, the rendezvous server assigns one of its public IP
addresses (assuming that it controls multiple IP addresses; otherwise it
assigns its own IP address) and possibly a TCP/UDP port number to the
service and waits for TCP connection requests, UDP datagrams, or sim-
ply IP packets. The rendezvous server further publishes the service tag
together with the assigned IP address and port number to a distributed
storage network like Gnutella [18].

A client looks up a given service tag in the distributed storage network
to retrieve IP address and port number of the rendezvous server. De-
pending on the privacy requirements, the client can either contact the
rendezvous server directly or use an IP wormbhole itself to protect its real
IP address. All data between client and server are hereafter forwarded
by the rendezvous server in both directions. If confidentiality is needed,
client and server need to apply end-to-end encryption, because otherwise
data is readable for the rendezvous server.

Rendezvous servers might have transient nature and go offline during
the lifetime of a service. In order to stay connected, services should set up
connections to multiple rendezvous servers and advertise them under the
same service tag in the distributed storage network. The author further
sketches an extension to switch rendezvous servers seamlessly during an
ongoing connection between client and server.

One problem of the approach is that the distributed storage network
exhibits only weak security properties: an adversary could publish an arbi-
trary number of entries for the same service tag, making it hard for clients
to identify the legitimate ones. The author discusses the possibility to let
entries be signed by the service provider and verified by the clients. How-
ever, this requires a change in the design, as entries are generated and
published by the rendezvous server and not by the service provider; it also
puts the burden of downloading and verifying a possibly large number of

entries to clients. It would be better to implement authentication at the

38 Background on Pseudonymous Services

distributed storage nodes rather than at clients and servers.

2.3.5 Tarzan

In 2002, Freedman and Morris presented Tarzan [16, 17], a peer-to-peer
anonymous IP network overlay. In this system every participant acts as
a proxy and relays data for other participants. In combination with cover
traffic an adversary cannot tell easily whether traffic originates at a cer-
tain proxy or is relayed for another participant. The network meta-data is
stored in a distributed fashion, so that there is no central database in the
network.

Participants can build tunnels to other proxies which are based on lay-
ered encryption and multi-hop routing as in the previously described ap-
proaches. The last proxy of a tunnel acts as network address translator to
bridge traffic between the Tarzan network and the Internet. This address
translation works in both directions, so that a service provider can estab-
lish a tunnel and publicize the address of the network address translator
to others as a way to contact him. Clients can then establish a connection
to the network address translator which forwards requests to the server
and delivers responses back to the client.

The major problem of this approach is that the Tarzan design does not
address the effect of volatility of proxies to service availability. Once a
proxy that is part of a tunnel leaves the network, the server needs to estab-
lish a new tunnel to the network address translator and is unavailable in
the meantime. Even worse, if the network address translator disappears,
the server needs to advertise a new service address for its service. In short,

the design is missing a naming service for pseudonymous services.

2.3.6 12P

2P, the Invisible Internet Project, is another peer-to-peer-based approach

to achieve responder pseudonymity. The design is unpublished, so that

Technologies for Low-Latency Responder Pseudonymity 39

the following description is based on the information given on the project
website.® Every participant of the I2P network runs a router that may ini-
tiate connections to other routers itself and relay traffic for other routers.
Participants build uni-directional tunnels through previously selected
paths of routers to either send IP packets to the router at the end of the
tunnel (outbound tunnels) or receive data from there (inbound tunnels).

The default operation of I12P, as opposed to the previously described de-
signs, is to establish a connection to another, pseudonymously identified
I2P node while connections to non-I12P nodes explicitly require an out-
bound proxy running on an I2P node. I12P nodes store so-called lease sets
in the distributed network database. A lease set contains a participant’s
public key, a set of inbound tunnels, and a signature created with the par-
ticipant’s private key. Tunnels are valid for only 10 minutes, so that a
participant needs to refresh his lease set that often. A client can request a
lease set of another node by querying the database for the hash of the par-
ticipant’s public key and connect one of her outbound tunnels to one of
the retrieved inbound tunnels. As a means to counter attacks on specific
parts of the distributed database which could make a lease set unavailable,
entries are stored under daily changing keys by using the hash of the con-
catenation of the current date and the hash of the participant’s public key
as storage key.

The design of responder pseudonymity in I2P is promising, but with-
out any published information besides the website it is hard to evaluate

security properties of the system.

2.3.7 Tor

Tor [11] evolves the original Onion Routing design [25]. Tor contains a

feature to provide responder pseudonymity that is called location-hidden

9 Seealso the 2P homepage: http://www.i2p2.de/techintro.html (last checked: Dec
17, 2008)

40 Background on Pseudonymous Services

services, or hidden services in short. The design of hidden services refines
Goldberg’s rendezvous design [19] by connecting two circuits created by
client and server on a common rendezvous point. Hidden services further
use separate introduction points as first contact points for clients to improve
denial-of-service protection and a hidden service directory system to store

hidden service descriptors.

A service provider who wants to offer a hidden service generates a pub-
lic key pair as long-term identity for his service. The server establishes
the hidden service in the Tor network on randomly selected relays that act
as introduction points. In order to do so the server creates circuits consist-
ing of three relays and establishes introduction points on the last relays of
these circuits. The server sends establishment messages to these relays
that are created with the private key of the hidden service. The first two re-
lays in the circuit protect the link between the hidden service identity that
is known to the introduction point and the IP address that is known to the
first relay in the circuit. In the next step the server creates a hidden service
descriptor containing the list of previously established introduction points,
signed with the private key of the service. The server uploads this descrip-
tor to the hidden service directory using a circuit to hide the link between
its address and the hidden service identity from the hidden service direc-
tory. Finally, the server advertises the hash of the hidden service’s public
key, the onion address, to prospective clients. After that, the hidden service
is established and ready to be contacted by clients.

A client that wants to establish a connection to a hidden service fetches
its hidden service descriptor from the hidden service directory. The cli-
ent uses a circuit for this request to hide its attempt to access a certain
hidden service from the hidden service directory. If a descriptor is avail-
able, the client establishes a separate rendezvous point in the same way as
the server established introduction points. The rendezvous point will be
used to transfer application data. The client further opens a circuit to one

of the service’s introduction points. As soon as the rendezvous point is

Technologies for Low-Latency Responder Pseudonymity 41

established, the client sends an introduction request to the introduction
point that is forwarded to the hidden service. The server learns about the
rendezvous point of the client and opens a circuit to that relay. The server
then sends a rendezvous message to the rendezvous point that is passed
on to the client. At this point, client and server share a common circuit.
The client can then attach application streams to that circuit and send re-
quests to the hidden service.

The hidden service design exhibits a couple of useful security proper-
ties. Hidden services can resist certain attacks by quickly changing their
introduction points and publishing a new descriptor containing new ones.
The service is authenticated towards the introduction points, the hidden
service directory, and clients, so that nobody can impersonate an existing
hidden service. However, there are also a few drawbacks of the hidden ser-
vice design. Clients require special software, the Tor software, to be able
to access a hidden service. Further, the hidden service directory, consist-
ing of three fixed servers, constitutes single points that are able to censor
any hidden service.

The hidden service design is the most evolved pseudonymous services
design nowadays. It is deployed in a network consisting of more than
1,000 relays and a few hundred thousands users. The Tor system, in-
cluding the hidden service protocol, is well-documented and backed up
by an active community. These facts make Tor hidden services the most
promising candidate for implementing private services as motivated in

the previous chapter.

2.3.8 Comparison

All described designs support responder pseudonymity by allowing clients
to establish a connection to a server under a given pseudonym without
knowing its real location. The approaches shall be compared using a num-

ber of criteria ranging from security to usability properties. The ISDN-

42 Background on Pseudonymous Services

Table 2.2: Comparison of low-latency designs supporting responder pseu-

donymity
Onion TAZ/Re- PIP Tarzan I2P Tor
Routing webber
Long-term pseudonyms S) @

Responder authentication

No single point of censorship
Traffic analysis resistance
Performance

Usability for initiator

(OOMC NSO
SEONBONONO
S I B S I OS]
SRS IS IS B O RN O]
(OB O I S I I
(ORI B OIS IC]

based design is excluded from this comparison, because its assumptions
are too different from the other approaches that are designed for packet-
switched networks like the Internet. Table 2.2 shows an evaluation of the

approaches with respect to the discussed criteria.

The first criterion is the ability of a responder to maintain a long-term
pseudonym. This ability is a prerequisite for offering a pseudonymous ser-
vice that can be contacted by clients using the same pseudonym. The orig-
inal onion routing does not exhibit this feature but only sketches briefly
how clients can learn about and use reply onions. The Tarzan system
binds a responder pseudonym to a Tarzan node in the system that might
vanish at any time, leaving no way of contacting the responder anymore.
The other presented designs permit responders to maintain a long-term
pseudonym by using a directory to map it to short- or medium-term con-

tact information.

From the designs that support long-term pseudonyms, only a subset
ensures authenticity of the responder using a pseudonym. These designs in-
clude I2P and Tor hidden services where the mapping between long-term
pseudonym and short- or medium-term contact information is signed by

the responder. Neither the TAZ/Rewebber system nor the PIP system

Technologies for Low-Latency Responder Pseudonymity 43

exhibit authentication as a mandatory feature. Onion Routing and the
Tarzan system do not provide authentication of responder pseudonyms
as they lack support for long-term pseudonyms in the first place.

In the context of how long-term pseudonyms are implemented, another
criterion to compare the approaches is censorship resistance. If the map-
ping between long-term pseudonym and short- or medium-term contact
information is stored at a single point, it could be censored to make a
responder unavailable. This censoring might be possible in the TAZ/
Rewebber system as well as in Tor hidden services. The PIP design and
I2P use distributed approaches to store mappings for long-term pseudo-
nyms which are significantly harder to censor. Onion Routing and Tarzan
do not have a single point of censorship as they do not support long-term
pseudonyms.

Further, the approaches shall be compared with respect to their traffic
analysis resistance. None of the approaches introduce delays on purpose
to defeat traffic analysis of a global passive adversary who can observe the
whole network. But traffic analysis can also be performed by creating new
paths through a network beginning or ending at the victim and observing
recurring traffic patterns. The TAZ /Rewebber system is vulnerable to this
attack, because a rewebber locator may be reused for an arbitrary number
of requests. Tor hidden services have been proven vulnerable to a simi-
lar attack where an adversary could force the server to create new circuits,
possibly including a rogue node at the first position; however, this vulner-
ability has been fixed [56]. The other systems are not vulnerable to this
attack, because paths are established by the responder, as in PIP, Tarzan,
or I2P, or can only be established once, as in the original Onion Routing
design.

The performance of establishing a connection is another important crite-
rion with regard to usability. The original Onion Routing design, the
TAZ /Rewebber system, 12P, and Tor hidden services require the initiator

to create a new path or part of it through the network for every connec-

44 Background on Pseudonymous Services

tion. On-demand path creation slows down connection establishment to
a pseudonymous responder as compared to approaches where the initia-
tor only needs to connect to a publicly accessible node in the network, as
in the PIP system and Tarzan.

Finally, usability for the initiator is different when comparing the ap-
proaches. The TAZ/Rewebber system, the Pseudonymous IP network,
and Tarzan allow the initiators of connections to pseudonymous respon-
ders to do so using standard software, like a Web browser. In contrast
to this, Onion Routing, I12P, and Tor require the initiators to use special
software when contacting a pseudonymous responder. This requirement

reduces usability to a certain extent.

This chapter has given a definition of pseudonymous services and has
presented the necessary background on technologies to realize them. As
a result, Tor hidden services [11] have been identified as a promising can-
didate to implement private services which use pseudonymous services
as a basic building block. The next chapter will give more specific back-
ground on Tor hidden services which is required in order to understand

the missing pieces for implementing private services.

3 Tor Hidden Services

Tor hidden services permit users to provide a service to other users with-
out leaking the location of the server. Concealing the server location is
the first step in hiding the user’s activity and protecting the server from
attacks. In this chapter the Tor system, including the hidden service fea-
ture, is described in more detail in order to give enough background for
the subsequent contribution chapters. The description starts with two
general features of Tor, namely circuit creation in Section 3.1 and the di-
rectory system in Section 3.2. The hidden service protocol is presented in
more detail in Section 3.3. Finally, Section 3.4 describes the threat model
of Tor which defines the capabilities of an adversary that the system is able

to protect against.

3.1 Circuit Creation

The Tor network is an overlay network consisting of relays that transport
user data and clients that operate on behalf of users. Clients and relays
exchange fixed-size cells over TLS-encrypted connections [9] to build multi-
hop circuits and attach streams to them. In contrast to the original onion
routing design, circuit creation in Tor exhibits perfect forward secrecy by
negotiating ephemeral session keys rather than using long-lived public
keys. This process is called telescoping and is performed incrementally.
Figure 3.1 shows the sequence of circuit creation and stream attachment

that is described in the following.

A client starts to create a circuit by selecting (typically three) relays based

46 Tor Hidden Services

Client Entry Node Middle Node Exit Node Server
(TLS-encrypted) (TLS-encrypted) (TLS-encrypted) (unencrypted)
CREATEFAST
" CREATEDFAST
EXTEND > CREATE -
" EXTENDED CREATED
EXTEND o E
» XTEND » CREATE _
< < < CREATED
EXTENDED EXTENDED
RELAYBEGIN
- RELAYBEGIN » RELAYBEGIN (open TCP
connection)
< < " RELAYCONNECTED
<€ RELAYCONNECTED
RELAYCONNECTED

Figure 3.1: Circuit creation and stream attachment

on criteria like bandwidth, availability, or policy to exit to a certain target.!”

The three relays are also referred to as entry, middle, and exit node depend-
ing on their position in a circuit. The client establishes a connection to
the first relay using TLS which provides authentication of the relay to-
wards the client and confidentiality of communication. The client then
sends a CREATEFAST cell with the first half of a secret key to encrypt data
in the newly established circuit. The relay responds with a CREATEDFAST
cell with the second half of the secret key, after which both client and relay
share a secret key. It is not necessary to perform a Diffie-Hellman key ex-
change at this point, because the client has already authenticated the relay
and both are communicating over an encrypted connection. This is not

the case for the subsequent nodes in the circuit to which a client does not

10 Tt is assumed here that clients know the list of all relays, their configuration, and public

keys which will be described in more detail below.

Circuit Creation 47

open a direct TLS connection.

In the next step the client extends the one-hop circuit incrementally
to the other relays. Therefore, the client sends an EXTEND cell to the
first relay that is encrypted with the previously negotiated secret key'! and
that contains a nested CREATE cell that is encrypted for the public key
of the second relay. The first relay decrypts the EXTEND cell, establishes
a TLS connection to the second relay, and forwards the encrypted CRE-
ATE cell. The CREATE cell contains the first half of a Diffie-Hellman key
handshake [10] to establish a secret key between client and second relay.
The second relay performs the Diffie-Hellman handshake and responds
to the first relay with a CREATED cell containing the second half of the
Diffie-Hellman handshake. The first relay encrypts the received CREATED
cell with the secret key, encapsulates it in an EXTENDED cell and sends
it to the client. Subsequent circuit extensions work likewise with all cells
except CREATE and CREATED being encrypted multiple times using the
previously negotiated secret keys.

As soon as a circuit is established, the client can attach one or more
application-level streams to it. Therefore, the client prepares a RELAY-
BEGIN cell by encrypting it to the secret keys and sending it to the first
relay in the circuit. Every relay removes the outer encryption layer and
forwards the cell to the next relay. The last relay finds the RELAYBEGIN
cell and opens a connection to the given target. After the connection has
been established, the last relay creates a RELAYCONNECTED cell, encrypts
it with the shared secret key and sends it to the previous relay in the cir-
cuit. Again, every relay encrypts the received cell and forwards it to either
the previous relay in the circuit or to the client. Finally, the client decrypts
the cell with all secret keys and learns that the stream has been opened.

Subsequent data is sent similarly in both directions contained in RELAY-

11 To be precise, client and relay use keys that are derived from the negotiated secret key to
encrypt data that is sent in either forward or backward direction; however, this level of

detail is not required for the discussion here.

48 Tor Hidden Services

DATA cells. Both sides can close the stream by sending a RELAYEND.
After all streams have been closed and the circuit reached a certain age,
the circuit can be closed by sending a DESTROY cell in either direction. A
more in-depth specification of circuit creation in Tor can be found in the

Tor specification [64].

The circuit creation process in Tor may appear rather cumbersome.
However, its purpose is to achieve perfect forward secrecy. In the origi-
nal Onion Routing design [25] a single onion is used to establish a virtual
circuit that is encrypted using medium-term public keys. A hostile node
could record traffic and later force successive nodes to decrypt it. This
threat does not emerge with the telescoping approach in Tor. Once ses-
sion keys are deleted, nobody can force or compromise a relay to decrypt
old traffic. The circuit creation algorithm further provides authentication
of relays to the initiating client so that an adversary cannot easily imper-

sonate relays which was shown by Goldberg [21].

Building circuits in Tor can be a time-consuming task and has therefore
been subject to various investigations. Kate and others [32] proposed an al-
ternative circuit building protocol that requires only a single pass and also
provides forward secrecy. @verlier and Syverson [58] presented a mod-
ified protocol based on Diffie-Hellman handshakes to build Tor circuits
with fewer exponentiations than in the original protocol thus accelerating
the process. Panchenko and others [59] measure the influence of single
overloaded nodes on the general performance of Tor. They propose new
path selection strategies to improve latency of Tor based on actively mea-
suring latencies and passively observing bandwidths of direct links to Tor
relays. Similarly, Snader and Borisov [74] propose tunable path selection
algorithms, so that users can choose between strong anonymity protec-
tion or better performance. Under the assumption that this choice does
not make users partitionable, overall anonymity for all users increases be-

cause of an increase in the total number of users.

Directory System 49

3.2 Directory System

Clients need a list of all relays including their addresses, public keys, and
policies to exit to certain targets in order to build circuits. Therefore, a
small number of trusted directory authorities keeps a list of active relays
and serves them to clients. Itis vital that all clients know roughly the same
set of relays. Otherwise, an adversary could easily identify those clients
using a different set of relays. Tor contains a separate directory protocol
[63] that specifies how routing information is distributed to clients.

The first directory protocol version was designed for single directory au-
thorities that serve directories of all relays to the clients. The major prob-
lem of this version is that directories containing all information about a re-
lay, including public keys, grow pretty fast. The first protocol version was
therefore extended by directory caches which help distributing the load to
multiple nodes. Further, network status documents were introduced which
contain a short list of routers rather than the complete descriptors. This
separation allows clients and caches to download network status docu-
ments in shorter intervals and request only the missing router descriptors
afterwards.

Another problem of the first directory protocol was that clients had to
believe in the network status document of a single authority. Therefore, in
the second directory protocol version clients downloaded network status
documents from all directory authorities and combined them to obtain a
common view on the network. However, as the network grew, the net-
work status documents did so, too. This has made it quite expensive for
clients to download all network status documents and combine them lo-
cally.

At the time of writing, the third directory protocol version [63] is in use.
The idea of this version is to combine network status documents already
on the directory authorities and serve documents which are signed mul-

tiple times to clients. Whenever a relay is (re-)started or has changed its

50 Tor Hidden Services

-10 -5 0 60 180
| | - - >
exchange exchange consensus is fresh consensus is not fresh
votes signatures but still valid

Figure 3.2: Creation and validity of a network status consensus (min)

configuration, it creates a router descriptor containing, among other things,
its IP address and onion port for incoming connections, long-term identity
key, medium-term onion key, and its exit policy. The relay then uploads
its router descriptor to all directory authorities.!? The idea is that clients
should only use a relay that is known to at least half of all directory author-
ities; otherwise a single directory authority could fool clients by serving a
specifically prepared list of relays in the attempt to destroy their anony-
mity. As a solution to counter this problem, the directory authorities vote
in fixed intervals on a common list of routers, the network status consensus.
Clients download the consensus from any of the directory authorities to
obtain a common view on the network. Afterwards, they need to download
the corresponding router descriptors to be able to create circuits.

Figure 3.2 shows the timing of creation and validity of a network status
consensus. The times are system-wide defaults at the time of writing and
may change in the future. 10 minutes prior to publication of a consen-
sus, the directory authorities start exchanging signed network status vote
documents containing the identities of known relays. Every directory au-
thority then computes a network status consensus document containing the
identities of all relays that are listed in the majority of all votes. Under
the assumption of full connectivity between directory authorities, every
authority comes up with the same list of relays. 5 minutes prior to publi-
cation, the authorities exchange detached signatures of the previously cre-

ated consensus. At time 0 the consensus is published and made available

12 At the time of writing there are six directory authorities running the described version 3

of the directory protocol.

Hidden Services 51

to clients. It is then fresh for 60 minutes at which point a new consen-
sus is published. A consensus is valid for 180 minutes after publication
during which clients do not need to download a new consensus. After
180 minutes at the latest a consensus is discarded and clients download a

Nnew consensus.

3.3 Hidden Services

Hidden services make use of initiator-anonymous circuits to provide re-
sponder pseudonymity. The hidden service protocol defines three addi-
tional roles that are implemented by Tor relays: hidden service directory
server (which can be distinct from the directory authorities as described
above), introduction point, and rendezvous point. Tor clients can both pro-
vide and access a hidden service. The in-depth specification of the hid-
den service protocol is described in the Tor rendezvous specification [65],
which already includes the changes that have been performed for the pur-
pose of this thesis. Figure 3.3 shows the steps to set up a hidden service
in the network and to establish a connection to it.

Before being able to offer a hidden service, service provider Bob gen-
erates a public key pair as long-term identity for his service. Bob then
establishes his service in the Tor network by randomly selecting a small
number of relays as his introduction points and creating circuits to them.
He sends ESTABLISHINTRODUCE cells containing the public key of the
service to the prospective introduction points in step 1. The introduction
points acknowledge the request by sending INTROESTABLISHED cells in
step 2, meaning that the relays are ready to accept introduction requests
from clients.

After establishing a sufficient number of introduction points, Bob cre-
ates a hidden service descriptor containing the public key of the service, a
timestamp, and the introduction point list, signed with the private key of

the service. He uploads this descriptor to the three authoritative hidden

52 Tor Hidden Services

Service
Directory

R

Client \
9

Hidden Server

Rendezvous Point

Figure 3.3: Overview of the hidden service protocol

service directories in step 3 which is acknowledged in step 4. Bob uses
another circuit for uploading his descriptor in order to hide his IP address
from the directories as well. After that, the hidden service is established
and ready to be contacted by clients.

Bob can tell the onion address of his service, which is a hash of the public
key of his service, to his clients in step 5. The advantage of using a service
name that is derived from a public key as opposed to a freely selectable
name is that it is self-authenticating: clients can verify that an obtained
hidden service descriptor was created by the service that they expect and
do not have to trust the directory servers in returning the correct descrip-
tor for a given service name. The disadvantage, however, is that onion
addresses are less convenient for users to handle than freely selectable
names.

A client Alice who wants to establish a connection to Bob’s service starts
by fetching his hidden service descriptor from the directory servers in
step 6 and receives a response in step 7. Alice uses a circuit for this request

to hide her attempt to access Bob’s service from the directory servers.

Hidden Services 53

If Bob’s service is available and Alice has received a hidden service de-
scriptor, she establishes a separate rendezvous point that will be used to
transfer user data for her request. Typically, she does not need to estab-
lish a new circuit from scratch, but can reuse a preemptively established
circuit for this purpose; this process is called cannibalization and is al-
ways used when a circuit needs to be created on demand. Alice sends
an ESTABLISHRENDEZVOUS cell to the prospective rendezvous point in-
cluding a single-use random string, the rendezvous cookie, in step 8. The
rendezvous point stores this cookie and acknowledges receipt by respond-
ing with a RENDEZVOUSESTABLISHED cell in step 9. In the meantime,
Alice establishes a circuit to one of Bob’s introduction points. She may
reuse an existing circuit by means of cannibalization and extend it by a

single hop to the introduction point.

As soon as Alice’s rendezvous point and the circuit to Bob’s introduc-
tion point are established, Alice sends an INTRODUCEL cell to the intro-
duction point in step 10 containing the unencrypted hash of Bob’s pub-
lic key and an encapsulated message part. The latter is encrypted using
Bob’s public key and contains IP address and onion port of Alice’s rendez-
vous point, the rendezvous cookie, and the first half of a Diffie-Hellman
handshake. The introduction point compares the unencrypted hash with
previously received public keys of services. If the introduction point finds
a match, it acknowledges Alice’s request in step 11 and forwards the en-
crypted message part of the INTRODUCE cell as INTRODUCE2 cell to Bob
in step 12. Bob establishes a circuit to Alice’s rendezvous point, possi-
bly by extending a cannibalized circuit, and sends to it a RENDEZVOUS1
cell containing the rendezvous cookie and the second half of the Diffie-
Hellman handshake in step 13. The rendezvous point, upon recognizing
the rendezvous cookie, forwards the second half of the Diffie-Hellman
handshake as RENDEZVOUS2 cell to Alice in step 14, finally establishing
an end-to-end encrypted circuit between Alice and Bob. Alice can then at-

tach application-level streams to the circuit and perform service requests.

54 Tor Hidden Services

3.4 Threat Model

A threat model defines the capabilities of an adversary which the system
can protect its users from. A common threat model in privacy-enhancing
technologies is that of a global passive adversary; in this model the adver-
sary is capable of observing (but not modifying) all traffic that is passed
within the anonymous communication system including from and to its
users. Tor [11], like all other practical low-latency anonymous communi-
cation systems, does not protect against a global passive adversary. Tor
does not introduce artificial delays in the transported traffic and does not
add cover traffic at times when no real traffic is sent. An adversary who
is able to observe all traffic between the relays and between clients and
relays can link the initiators to responders and hidden services to the serv-
ers which provide them. Such an attack would be performed using traffic
analysis techniques, that is, by comparing patterns in the observed traffic.

In contrast to this, Tor protects its users against an adversary that can
control only a limited fraction of all network traffic. This adversary can
generate, modify, delete, or delay traffic, can operate relays of his own,
and can compromise some fraction of other relays. The assumption of
such an adversary is more realistic in the Tor network. Relays are run
by volunteers distributed over the whole world which, however, allows an
adversary to become part of the network with one or a few nodes without
attracting much attention. In general it is deemed to be sufficient to ob-
serve only the ends of a circuit to correlate initiator and responder, or in
case of hidden services, to link a hidden service to the server that provides
it. Attacks on low-latency anonymous communication systems that make
use of traffic analysis are described, for example, by Raymond [66] and

Serjantov and Sewell [72].

This chapter has given a brief overview of Tor and its hidden services

Threat Model 55

feature. This description will be necessary to understand the limitations
of hidden services for private services and will be required to comprehend
the contribution of this thesis. The next three chapters will point out the
specific problems of hidden services with respect to implementing private

services and will present solutions to overcome them.

4 Distributed Descriptor Storage

Anonymous communication systems that support recipient pseudonyms
usually rely on a directory service. Its purpose is to store and serve descrip-
tors containing the mapping from a long-term pseudonym to short- or
medium-term contact information. In most cases the contact information
expires after a certain time, but initiators shall still be able to contact the
recipient under a persistent pseudonym. Another reason is convenience,
so that users do not need to remember cumbersome contact information
but can refer to a certain recipient using a human-readable name. The re-
quirements to directories for recipient pseudonymity as described below
exceed those to naming services in general when it comes to privacy of
stored entries. These requirements make the design of a directory service
for this application a non-trivial task.

This chapter presents a novel distributed directory design for Tor hid-
den services. The basic elements of the design have been described earlier
as part of a privacy