
Bypassing Tor Exit Blocking with Exit Bridge Onion Services
Zhao Zhang

Georgetown University

Wenchao Zhou

Georgetown University

Micah Sherr

Georgetown University

ABSTRACT
Tor exit blocking, in which websites disallow clients arriving from

Tor, is a growing and potentially existential threat to the anonymity

network. This paper introduces HebTor, a new and robust architec-

ture for exit bridges—short-lived proxies that serve as alternative

egress points for Tor. A key insight of HebTor is that exit bridges

can operate as Tor onion services, allowing any device that can cre-

ate outbound TCP connections to serve as an exit bridge, regardless

of the presence of NATs and/or firewalls. HebTor employs a micro-

payment system that compensates exit bridge operators for their

services, and a privacy-preserving reputation scheme that prevents

freeloading. We show that HebTor effectively thwarts server-side

blocking of Tor, and we describe the security, privacy, and legal

implications of our design.
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1 INTRODUCTION
Researchers have long focused on understanding how censors block

access to anonymity networks [5, 18, 45, 52, 57] and how to best

thwart such efforts [6, 12, 16, 17, 26, 27]. Generally, the focus has

been on nation-state censors [2, 8] and the techniques they employ

to enumerate anonymous relays, distinguish routes that traverse

decoy routers, and more generally, curtail unfettered access to the

Internet.

Separate from the arms-race that is occurring on the ingress

side of anonymity networks—that is, efforts to prevent users from

accessing the uncensored Internet—there is the symmetrical case of

blocking access from anonymity networks. For anonymity networks
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that use proxies (i.e., relays) to forward their users’ traffic, such

blocking is trivially achieved by enumerating and preventing access

from the anonymity network’s egress points (e.g., Tor exit relays). In

particular, in the case of Tor, its exit points are publicly advertised.

Tor exit blocking is becoming increasingly common [28, 37, 60],

with as many as 20% of popular websites discriminating against

users arriving from the Tor network [47]. Although there is anec-

dotal evidence that Tor transports a disproportionate share of ma-

licious and otherwise unwanted traffic [32], perhaps surprisingly,

there is also significant circumstantial evidence that Tor is often

not specifically targeted by sites and is unwittingly blocked. In

particular, a number of DNS and IP blacklists indiscriminately list

(nearly) all Tor relays, including non-exits [28, 37, 47]. Sites that

use such blacklists to filter out requests (or equivalently use hosting

providers that subscribe to such blacklists) will thus block Tor by

default.

The appearance of Tor relays on blacklists presents a potentially

existential threat to the network. As more sites and (worse) web

hosting providers prevent access from Tor, less of the Internet

becomes accessible to Tor’s users, making the network increasingly

ineffective at providing anonymous browsing and/or censorship

circumvention. The consequences of this threat are not entirely

hypothetical: to the great annoyance of the maintainers of the Tor

Project [33], Cloudflare inserted CAPTCHAs on their hosted sites

to users who arrived via the Tor network. (Through some clever

engineering [10, 44], Tor users no longer have to solve multiple

CAPTCHAs for Cloudflare-hosted websites.) This is indicative of a

critical threat to Tor: a wide-scale and unmitigated adoption of a

blacklist that contains Tor relays could effectively cripple the utility

of the anonymity network.

We recently proposed the notion of ephemeral exit bridges for
Tor [60] and envisioned short-lived proxies hosted by popular cloud

providers such as Amazon or Google. These proxies serve as addi-

tional hops in Tor circuits: traffic would exit Tor through existing

exit relays, and be further tunneled through these cloud-hosted

proxies towards their intended destinations. However, this approach

has several practical limitations as it relies on centralized cloud-based
exit bridges. In short, the service can be easily taken down by the

cloud provider.

This paper presents a new, practical, and more distributed archi-

tecture for Tor exit bridges to better mitigate the threat of server-

side blocking. Rather than rely on centralized cloud-based exit

bridges, our architecture uses a network of volunteer-run ephemeral

exit bridges that operate for short periods and can be hosted on

any network. An important advantage of our architecture is that it

makes distinguishing non-anonymous users from exit bridge users

far more difficult, since both sets of users can arrive from residential

networks, for example.

There are a number of challenges in constructing exit bridges

for Tor: (1) ordinary Internet users should have realistically strong

incentives to run exit bridges on their computers so that such a

Session 1A: Anonymous Routing and Censorship  CCS '20, November 9–13, 2020, Virtual Event, USA

3

https://doi.org/10.1145/3372297.3417245
https://doi.org/10.1145/3372297.3417245


scheme might be practically and widely deployed; (2) the exit bridge

architecture should not make it easier for an adversary to attract

a disproportionate share of Tor egress traffic than operating its

own exit relay; and (3) more generally, the exit bridge architecture

should not inflict additional risks to its users’ anonymity over those

that are already imposed by Tor.

Our approach towards meeting these challenges is to operate

exit bridges as Tor onion services.
1
We call our onion-based exit

bridge solutions HebTor (for hidden exit bridges). The volunteer-

operated HebTor exit bridges accept connections from end-users

via Tor’s existing onion services protocol, and then forward the

traffic to/from the users’ requested destination. In brief, exit bridges

are SOCKS proxies, operating as Tor onion services. Because Tor’s

onion service uses its own rendezvous protocol, exit bridges need

not be publicly accessible and can exist behind NATs or firewalls.

So long as a device is able to create outbound TCP connections, it

can serve as an exit bridge.

We emphasize that HebTor is not intended to conceal the network
addresses of the exit bridges. Exit bridges reveal their IP addresses

whenever they establish TCP connections to the requested destina-

tions. We use Tor’s onion services primarily to (1) take advantage

of their NAT-piercing properties and (2) avoid making changes to

Tor’s core protocols.

As a strong incentive to operate an exit bridge, HebTor allows

exit bridge operators to earn money. We borrow from our previous

design [60] and present simple tasks (e.g., short image labeling

problems) that must first be solved in order for a Tor user to use

an exit bridge. In short, we trade off a halfdozen seconds of work

in favor of access (since the requested site would otherwise be

inaccessible). Completing these tasks earns micropayments which

are transferred to the exit bridge operator.

Unsurprisingly, our design presents a number of interesting

technical challenges, including (but not limited to) pairing Tor users

with bridge operators, ensuring proper payment and verification,

and preventing cheating either by the exit bridge or by the client,

all while not endangering the anonymity of the Tor user or the

unlinkability of her actions.

2 BACKGROUND
Tor is a network of approximately 6700 volunteer-operated relays
(i.e., servers) that provides anonymous TCP connections [12, 50] to

an estimated eight million daily users [30]. Most commonly, users

access Tor through the Tor Browser, which bundles the Tor client

software with a modified version of Firefox. Relays also run Tor to

manage connection state and handle packet forwarding.

To provide sender anonymity, Tor constructs source-routed paths

of (usually) three relays called circuits. The ingress point of the

anonymity network is typically a Tor guard relay, which a user

randomly selects and uses consistently for a long period [11]. The

second and third hops in a circuit are respectively themiddle and exit
relays. Exit relays serve as the egress points of Tor. Relay operators

can (and often do) opt not to serve as exits. (We discuss the potential

legal ramifications of operating an exit relay in Appendix A.)

Tor circuits use layered encryption to hide the endpoints of

anonymous communication. The client’s Tor instance agrees on

1
Onion services were previously called hidden services.

cryptographic keys with each relay, using a telescoping approach to

tunnel client-to-relay communication through already-established

portions of the circuit.

Onion services. Tor also enables receiver anonymity. Here, a

server can receive incoming connections via Tor that are addressed

to its onion address (a .onion URL) without having to expose its

actual network location (i.e., its IP address). To run an onion service,

Tor software running on the server selects a number of relays as

introduction points, and constructs an onion service descriptor that
lists these introduction points as well as the onion service’s public

key. The onion service descriptor is then uploaded to a distributed

hash table (stored amongst the Tor relays), indexed with the server’s

onion address, which is derived from the server’s public key.

A user with knowledge of the service’s .onion address can then

retrieve the onion service descriptor, fetched using the distributed

hash table via an anonymous Tor circuit. The user then selects a

relay of its choosing as a rendezvous point (RP) and transmits a one-

time secret to the RP via an anonymous Tor connection. The user

then sends a message to an introduction point, informing it of the

chosen RP and the one-time secret. The introduction point forwards

this information to the onion service. Finally, the onion service cre-

ates a Tor circuit to the RP along with the one-time secret. Similarly,

the user creates a Tor circuit to this same RP, using the identical one-

time secret. The RP then relays all further communication between

the two communicating parties. Critically, all communication is

carried out over Tor circuits, enabling both the client and the server

to conceal their respective network locations [51].

Blocking Tor traffic. Tor does not attempt to hide the identities

of its exit relays: their IP addresses are publicly advertised by the

Tor directory servers and the Tor-operated ExoneraTor service [49]

provides a queryable interface of historical records of current and

former exit relays. Identifying and blocking traffic from the Tor

network is thus trivial, since all Tor traffic must traverse through

these egress points.

A growing number of sites either block Tor or discriminate

against traffic originating from Tor (for example, by serving

CAPTCHAs). The Tor Project catalogues server-side attempts to

block Tor—which now number around 300 websites—and identi-

fies several third-party blacklists (e.g., abuseat.org, akismet, and

blocked.com) that include the IP addresses of Tor exit relays [37].

Tor contributors have also found instances in which popular host-

ing providers (namely, Akamai, Bluehost, Incapsula, and Convio)

implement Tor-blocking features for some (importantly, not all) of

the client websites that they host [37]. In their 2016 study, Khattak

et al. confirm that Tor exit blocking is fairly common, with nearly

4% of Alexa top-1000 sites preventing access from Tor [28]. In a

follow-up 2017 study [47], Singh et al. find much higher block rates

(approximately 20% of tested websites) and identify more than 80

blacklists that contain Tor exits.

Risks of operating an exit bridge or relay. Traffic exiting an

exit bridge could be misattributed as originating from the bridge’s

operator. We survey the current legal landscape concerning the

risks and liabilities of operating Tor exit relays in Appendix A, with

a bias towards United States and European law. In brief, the current

legal consensus seems to be that “safe harbor” provisions exist in

both American and European legal systems, providing prosecutorial
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and civil immunity for operating services (such as Tor) that merely

forward traffic. A more in-depth discussion of the legal risks is

provided in the Appendix.

3 RELATEDWORK
As discussed above, the Tor Project [37], Khattak et al. [28], and

Singh et al. [47] all measure the occurrence of Tor exit blocking,

with the latter study finding that such blocking is rampant [28].

Rather than block Tor access outright, Cloudflare instead chose

to require Tor users to first complete CAPTCHAs, in an attempt

to allow Tor’s human users to access their hosted sites while stem-

ming the use of automated scripts that employ Tor [32]. Because

the Tor Browser does not by default allow third party cookies, a

new CAPTCHA had to be solved for each visited Cloudflare-hosted

site. Privacy Pass [10] removed the annoyance of having to solve

multiple CAPTCHAs by using a 1-RTT cryptographic protocol to

issue a large number of tokens to a Tor user after completing a

CAPTCHA. These tokens could then be used to bypass further

Cloudflare-imposed CAPTCHAs [9]. Privacy Pass requires the co-

operation of the site and/or the site’s hosting provider, and does

not prevent the inclusion of exit relay IPs on blacklists.

Sites and hosting providers are able to block Tor exits since

the anonymity network funnels its egress traffic through a well-

defined and enumerable set of exit relays. Peer-to-peer anonymity

systems [42, 46] inherently offer greater resistance to server-side

blocking since their exit points are distributed across all (or many) of

its users, and thus aremore difficult to catalogue. Our focus however

is on Tor, given its enormous user base [30, 50]. We also note that

I2P [58, 62], the only widely deployed peer-to-peer anonymity

system, does not directly transit traffic to non-I2P websites and, like

Tor, it also has to rely on fixed exit points to reach the public Internet.

Conceptually, HebTor can be viewed as a method of providing a

distributed egress architecture for Tor.

A number of incentive schemes have been proposed to increase

the number of relays in the Tor network. PAR rewards relay op-

erators with virtual coins that they can spend to form fast paths

through the Tor network [1]. The “gold star” system similarly re-

wards relay operators with improved quality-of-service guarantees.

BRAIDS [21] uses a partially trusted offline bank to issue tickets to

relay operators, which again can be later used to achieve increased

performance. And Tortoise [36] provides incentives by enforcing

rate limits on Tor to all users except those who run relays. These

approaches all impose serious privacy risks, since they significantly

decrease the size of the anonymity set of potential senders of “fast”

traffic to just those who operate relays. Even if successful at increas-

ing the number of exit relays in the network, Tor includes all relay

information in publicly available consensus documents, allowing

blacklist maintainers and site operators to easily identify them.

We also provide incentives to increase the size of the Tor net-

work. Compensating bridge operators with cryptocurrency or fiat

currency could offset operators’ bandwidth costs and justify the

risk of forwarding anonymous traffic. Existing proposals in which

relay operators can receive proof-of-work (PoW) hashes for cryp-

tocurrency mining from Tor users seem promising. Unfortunately,

given the increasing difficulty of mining cryptocurrency [4], it is un-

clear that such an approach would be profitable for relay operators.

TorCoins [19] have been proposed as a new, Tor-focused alt-coin

cryptocurrency based on proof-of-bandwidth. Unlike TorCoin, we

do not require changes to the core Tor protocol.

Liu et al. define a system of server-specified access controls

for Tor, called TorPolice [29]. In TorPolice, access authorities issue
anonymous capabilities to users after the users complete some

proof-of-work (e.g., a CAPTCHA). Users then expend these capa-

bilities to obtain better service. However, unlike HebTor, TorPolice

requires the active participation of sites, which we seek to avoid.

We previously proposed an exit bridge architecture for Tor [60]

that relies on bridges that are hosted by popular cloud service

providers. That design argued that blocking resistance is achieved

due to the high collateral-damage of blocking exit bridges: since

exit bridges reside in the same IP address ranges as remote desktop-

as-a-service offerings (e.g., Amazon’s Workspaces), blocking cloud

IP addresses en masse would also result in the blocking of potential

website visitors that used cloud-based remote desktops. However,

that approach is dependent upon the cooperation of the cloud

provider: a disapproving cloud provider could immediately and

entirely disrupt the exit bridge infrastructure by suspending the

accounts that operate the bridges.

This paper presents a very different design for exit bridges that

removes all reliance on cloud providers.We achieve greater blocking

resistance by allowing almost any Internet-connected device to

function as an exit bridge, thus making the bridges more difficult

to enumerate.

We introduce a novel, privacy-preserving reputation system to

enable Tor users to select reputable exit bridges. Anonymous repu-

tation systems have been well studied, with such notable examples

as AnonRep [59] and EigenTrust [25]. Unfortunately, we know of

no existing privacy-preserving reputation system that is compatible

with our requirements, in which a set of anonymous users must

collectively form reputation scores for a separate set of exit bridges.

4 OVERVIEW
We begin our presentation of HebTor by introducing our threat

model and system goals (§4.1) and describing our intuitions (§4.2),

and high level design (§4.3).

4.1 Threat Model and System Goals
We adopt Tor’s threat model [12] and consider a non-global ad-

versary that is able to control some portion of the Internet and

optionally participate in Tor as a malicious insider, but is not able to

observe the entirety of the Tor network.We extend this threat model

to cover the various components of HebTor, which we describe in

subsequent sections.

HebTor is not designed to strengthen Tor’s resiliency to known

attacks such as traffic correlation [38, 40], hidden service

de-anonymization [3], and denial-of-service (DoS) [22, 23]. While

we adopt Tor’s threat model, we also inherit the network’s exist-

ing limitations and vulnerabilities. Put more positively, HebTor

also benefits from improvements to the core Tor network. Unless

exacerbated by HebTor, we view existing attacks against Tor as

orthogonal to HebTor and do not consider them in this paper.
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Unlike Tor, we also consider a secondary adversary that attempts

to prevent Tor users from accessing a website. This blocking adver-
sary could be the website operator, a website’s hosting provider,

or a contracted firewall service or tool that blocks IPs that appear

on a blacklist. Here, the blocking adversary’s goal is not necessar-

ily to de-anonymize the requesting user (although HebTor should

certainly maintain the anonymity offered by Tor), but rather to

discriminate against users arriving from the anonymity network.

Finally, we consider malicious HebTor participants who attempt

to game the system either to (1) attract a disproportionate share

of exit traffic (e.g., to increase its ability to perform traffic corre-

lation attacks) or (2) earn compensation without performing the

requisite traffic forwarding. We note that the former is an attack

on anonymity, while the latter targets HebTor’s incentive system.

We do not consider external attackers who attempt to disrupt

HebTor by conducting DoS against its infrastructure. We note here,

however, that such attacks are likely far more difficult to carry out

against HebTor than most other Internet services, since HebTor’s

infrastructure operates as onion services and thus is accessible

only through the Tor network. In short, HebTor benefits from the

denial-of-service protections provided to Tor onion services.

System goals. HebTor should achieve the following high-level

goals:

• Usability: Tor users should be able to use HebTor exit bridges
without significantly changing how they currently use Tor.

• Anonymity and unlinkability: HebTor should not degrade

Tor users’ anonymity or unlinkability [41].

• Unblockability: It should be difficult for a blocking adversary

to either enumerate exit bridges or otherwise discriminate

against HebTor users.

• Low overhead: The use of HebTor should not incur significant
performance penalties.

• Openness. The system should impose few requirements to

operate an exit bridge, allowing most Internet-connected

devices to participate as bridges.

4.2 Intuitions
Before presenting the technical aspects of HebTor, we briefly present

some of the main intuitions that motivate the system’s design.

Server-side blocking of Tor depends on exit enumeration.
A primary goal of HebTor is to make it difficult to enumerate its

exit points. Blocking Tor’s exit relays is fairly straightforward since

Tor publishes the network addresses of all of its relays (excluding

traditional Tor bridges that serve as alternative ingress points into

the network). There are many reasons why publishing a list of

relays is desirable (e.g., to enable source routing); however, doing

so also makes it trivial to perform exit blocking. A main intuition

behind HebTor is that it is much more difficult to block exit points

that are (1) ephemeral and (2) resistant to enumeration.

Relatedly, exit points (i.e., exit bridges) that are located in the

same autonomous systems and IP ranges as ordinary Internet users

(e.g., residential networks, corporate networks, college campuses,

etc.) are especially difficult to identify, since these are the same net-

work locations that ordinarily originate web requests. In contrast,

exit relays that are located on cloud-hosted virtual private servers

User Bridge Behind 
Onion Service

Website

Guard Guard

Exit

RP

Block
Pass

Figure 1: Two attempts to connect to a website that blocks
Tor exits.Top path:A connection via a traditional Tor circuit,
which is blocked by the website. Bottom path: A connection
via a HebTor exit bridge, which operates both as an onion
service and SOCKS proxy.

are fairly easy for a site to identify, as most (but certainly not all
2
)

client traffic does not originate from such networks.

Removing barriers will increase exit capacity. Only a small

fraction of Internet-connected devices are qualified to serve as Tor

exit relays. Exit relays must have static IPs and be publicly ac-

cessible; they must be able to accept incoming TCP connections.

HebTor is designed to remove such barriers, and enables nearly

any Internet-connected device to serve as an exit bridge. (More

concisely, the device must be able to create outbound TCP con-

nections and connect—either directly or through a Tor bridge on

the ingress side—to the Tor network.) Here, we make use of Tor’s

onion services, which due to its rendezvous protocol, enables any

computer running the Tor software to function as an onion service.

Relative to traditional Tor exit relays, exit bridges require far

less bandwidth capacity since their use is required only for sites

that block Tor. The Tor Metrics Portal reports that the average Tor

user’s throughput is approximately 0.200 Mbps [50]. A moderately-

provisioned ISP offers 100Mbps/100Mbps, and thus a single exit

bridge hosted on such a network could support 500 simultaneous

clients, which conservatively assumes all such clients are constantly

communicating at their maximum rate. In general, we believe that

exit bridges pose little threat of adding congestion to Tor, since the

Tor network itself is much more likely to impose a performance

bottleneck. Additionally, should a particular exit bridge offer poor

performance, Tor’s native congestion control mechanisms will pre-

vent it from causing congestion in the core Tor network. More

generally, by offloading some egress traffic onto additional infras-

tructure, the introduction of exit bridges increases the overall exit

capacity of the Tor network.

Incentives help. HebTor provides incentives for users to operate

exit bridges. In brief, the more Tor users who use an operator’s exit

bridge, the more money is earned by that bridge operator. Unlike

Tor exit relays, since HebTor supports short-lived ephemeral exit

bridges, users may be willing to operate bridges during off-hours or,

if ample bandwidth exists, throughout the day. By compensating

exit bridge operators with actual fiat currency, our hope is that a

sufficient number of Internet users will contribute their bandwidth

and grow the HebTor network of exit bridges.

2
There are important exceptions here, including VPN exit points and, as noted by

Zhang et al. [60], cloud-hosted remote desktops.
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4.3 High Level Design
HebTor consists of four components: (1) a broker that assigns exit

bridges to requesting users; (2) a Human Task Provider which

serves easily solvable tasks (e.g., image labeling tasks) to users and

produces a payment when a task is successfully completed; (3) a

pool of exit bridges that operate as Tor onion services; and (4) a

small Tor Browser extension and accompanying software that is

installed on client machines. We envision that this latter component

can be packaged with Tor.

The broker and Human Task Provider are assumed to be honest-

but-curious. HebTor is robust against malicious exit bridges.

At a high level, HebTor operates as follows: a Tor user who can-

not access a site due to Tor exit blocking is presented with a notice

by the Tor Browser, and is optionally redirected to the HebTor bro-

ker’s onion site. The broker presents the user with a human-solvable

task (e.g., an image labeling task), produced by the Human Task

Provider. Completing this task yields a payment that will ultimately

compensate the exit bridge operator. The user is then provided with

an exit bridge. The user’s Tor Browser extension then automatically

configures the exit bridge, and the user’s request is then routed

through Tor to the exit bridge’s onion service. In more detail, the

exit bridge operates a SOCKS proxy (as an onion service), which

then relays the traffic towards the final destination. An example

HebTor workflow is presented in Figure 1. We emphasize that all

HebTor communication (including with the Human Task Provider)

occurs over anonymous Tor circuits, with the exception of the final

“hop” between the exit bridge and the website. A more thorough

explanation of HebTor is provided in the following section.

5 IMPLEMENTATION
At a high-level, HebTor’s primary aim is to allow Tor users to

reliably route their traffic to a destination website through a set of

voluntarily participating bridges while still preserving Tor users’

anonymity. To achieve this goal, HebTor employs a set of protocols

to (1) curate a pool of bridge operators and their reputation (to

prevent abuse), (2) fairly assign and compensate a bridge operator

to forward users’ traffic (i.e., to provide incentives), and (3) create a

secure channel to tunnel traffic between the Tor user and the bridge

operator (to preserve anonymity and unlinkability).

5.1 Typical Workflow
A typical workflow of HebTor involves three main sets of partici-

pants: a broker hosted as a centralized trusted onion service; Tor

users who want to bypass Tor-exit blocking; and bridge operators

who willingly contribute their bandwidth and CPU resources to

tunnel traffic between Tor users and destination websites.

Register and advertise bridge (§5.2).HebTor employs the broker

to curate all volunteering bridges. As the first step for a new bridge

operator, it needs to register itself with the broker and start the

actual bridge as a hidden onion service. The use of onion services

allows the bridge operator to contribute even when it does not have

a static IP address or is behind a NAT. Once the bridge is online, it

advertises its onion address to the broker. The broker maintains a

pool of the onion addresses of all advertised bridges.

BO: bridge operator; BR: broker; HTP: human task provider

1: function operator_register([BO,BR,HTP])
2: (BO .ECC+,BO .ECC−) = BO .ecc_key_gen()
3: [BO .ECC+]siд(BO .ECC−) → HTP

4: HTP .init_record([BO .ECC+]siд(BO .ECC−))

5: [BO .ECC+]siд(BO .ECC−) → BR
6: if BR.h_verify(h_challenge(BR,BO)) then
7: BR.init_record([BO .ECC+]siд(BO .ECC−))

8: BR.success → BO
9: else
10: BR.reject → BO
11: ABORT

Figure 2: Bridge operator registration

Request bridge (§5.3). HebTor includes a TorBrowser extension
that allows Tor users to useHebTor’s service. The extension prompts

Tor users whether to request a bridge when they encounter a Tor-

exit blocking site.

Assign and compensate bridge (§5.4). Upon receiving a request

from the user, the broker selects a bridge from its advertised bridge

pool and assigns the bridge to the user. The selected bridge oper-

ator is compensated for its contribution to the system. While the

compensation originates from the Tor user, it should avoid jeopar-

dizing the anonymity of the user. In addition, given the monetary

incentive, the broker should assign the bridges according to some

fairness policy. In HebTor, the probability that a bridge operator is

selected is proportional to its reputation.

Create HebTor circuit and forward traffic (§5.5). The Tor user
is notified of the bridge assignment which includes the onion ad-

dress of the bridge and the broker’s signature to prove the authentic-

ity of the assignment. The Tor user contacts the bridge and presents

the signed assignment to initiate a HebTor circuit for tunneling

traffic between the Tor user and the destination site.

Update reputation (§5.6). The reputation of each bridge is up-

dated as the bridge forwards traffic. The reputation should reflect

the quality of service that the Tor user receives during an active

session (e.g., the ratio of successful vs. failed requests). In HebTor,

the browser extension and the local relay collect a QoS metric for

each minute of the service and report it to the broker. The broker

then updates the bridge’s reputation after the session concludes.

5.2 Bridge Registration and Advertisement
Bridge registration.Users who are willing to contribute idle band-
width and CPU resources may register at the broker as a bridge

operator. Figure 2 presents the pseudocode of the registration. A

bridge operator is uniquely identified inHebTor by its public/private

key pair; the public key is submitted to the broker and will be used

as the bridge operator’s permanent identifier (Line 7). To defend

against malicious bridge operators who create multiple identities

(for example, for the purpose of reseting a low reputation), the

bridge operator is required to complete a “human task” before the

registration (Line 6). Human tasks are discussed in more detail in

§5.4. For a successful registration, a clean reputation record will

be generated at the broker and linked with the bridge operator’s
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BO: bridge operator; BR: broker

1: function bridge_advertise([BR,BO])
2: BO .onAddr = BO.gen_onion_address()
3: BO .msд = [BO .ECC+,BO .onAddr ]siд(BO .ECC−)

4: BO .msд → BR
5: if BR.sig_verify(BO .msд,BO .ECC+) then
6: BR.advertise(BO .ECC+,BO .onAddr )
7: BR.success → BO
8: else
9: BR.reject → BO
10: ABORT

Figure 3: Bridge advertisement

identifier. Finally, the bridge operator registers with the Human

Task Provider in order to receive payment for its contribution as

an exit bridge (Lines 3-4). All communication between the bridge

operator and the broker occurs over anonymous Tor circuits; the

broker is itself a Tor onion service.

Bridge advertisement. After the registration, the bridge operator
further provides the onion address that hosts the actual bridge for

forwarding network traffic between the Tor user and the destina-

tion site. Figure 3 presents the pseudocode of this process. More

concretely, the bridge operator sends a signed message containing

the onion address and its identifier (i.e., its public key) to the broker

through Tor. The broker will then add this onion address to the

advertised bridge pool upon signature verification.

To some extent, the broker operates similarly to Tor’s direc-

tory service except that the broker records bridges’ onion addresses
rather than IP addresses. In addition, unlike Tor relays’ IP addresses

which are publicly accessible, discovering an exit bridge’s onion ad-

dress requires human effort. By only providing onion addresses and

requiring human effort for accessing the addresses, an adversary

cannot easily enumerate all bridges.

5.3 Bridge Request
HebTor provides a TorBrowser extension and a local relay that are

installed on the user’s computer. The extension locally maintains

a user-specified blacklist that includes destination sites that block

traffic from Tor exits. The user may modify the blacklist manually,

e.g., by adding a new entry to the blacklist when she experiences

difficulty accessing a site. (Although not implemented in our initial

release, the blacklist could be managed by a third party monitoring

service, which could operate similarly to distributed techniques to

detect misbehavior at exit relays [56]. We leave such integration to

a future release of HebTor.)

Once a request towards an exit-blocking site has been detected,

the TorBrowser extension first checks if a valid bridge instance

exists. If it does, this request will be encapsulated in a SOCKS5

session and forwarded to the bridge using the local relay (which

itself forwards the SOCKS5 connection over Tor). If no valid bridge

instance exists, the user will be redirected to a local page asking

whether to request a new bridge to visit this site. Should the user

choose to, she will be redirected to the broker’s onion site for a

bridge assignment after completing a “human task”. These human

task challenges prevent an adversary from enumerating all bridges,

BO: bridge operator; BR: broker; HTP: human task provider;
U: user

1: function bridge_assignment([BR,U ,HTP])
2: (U .ECC+S ,U .ECC

−
S ) = U .ecc_key_дen() // session key for

accessing a website

3: U .ticketParam = U .get_ticket() // blind ticket to bypass

extra human tasks

4: [U .ECC+S ,U .ticketParam]siд(U .ECC−
S )

→ BR

5: if U.ticketParam is not a list of unsigned tickets then
6: // U.ticketParam contains a ticket

7: if !BR.sig_verify(U.ticketParam,BR.ticketKey+) then
8: BR.reject → U
9: ABORT
10: else // U.ticketParam contains tickets to sign

11: if ! BR.h_valid(h_challenge(BR,U )) then
12: BR.reject → U
13: ABORT
14: BR.tickets = BR.rsa_sign_tickets(U .ticketParam)

15: BR.tickets → U
16: // now U either presents a valid ticket in ticketParam or

passes the extra HTP verification

17: BO = BR.random_select_advertised_bridge()
18: PoP = h_challenge(BO .ECC+,U )

19: if ! BR.h_verify(PoP) then
20: BR.reject → U
21: ABORT
22: BR.PoA = [BO .onAddr , PoP]siд(BR .ECC−)

23: BR.log_assign(U .ECC+S ,BO .ECC
+,BO .onAddr )

24: [BR.PoA,BR.success] → U

Figure 4: Bridge request and assignment

at the cost of imposing an extra burden to users. In §5.7, we present

an unlinkable ticket scheme based on RSA blind signature to reduce

such burdens.

5.4 Bridge Assignment and Compensation
Figure 4 presents the pseudocode of the bridge assignment process,

which considers the following three aspects:

Biased bridge assignment. Given the pool of advertised bridges

and their corresponding reputation scores, the broker randomly

selects one at random, biased by the bridges’ reputations (Line 17).

More specifically, the probability of a bridge being selected fits the

following distribution:

Pr [ bridgei is selected] = (scorei )/
∑n
j=1(scorej )

where n is the number of available bridges and scorei is bridgei ’s

reputation score. We add 1 to each score to normalize the score

range from [−1, 1] to (0, 2] to avoid negative probabilities.

Compensation through hCaptcha.Our current implementation

uses hCaptcha, a publicly available service provided by Intuition

Machines, Inc. [20], as its Human Task Provider. hCaptcha accepts

machine learning related data labeling tasks from third party com-

panies, and encapsulates tasks into CAPTCHA challenges which
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BO: bridge operator; BR: broker; U: user

1: function bridge_usage ([BR,BO,U ])

2: U .PoA → BO
3: BO .sig_verify(U .PoA,BR.ECC+)
4: if ! BO .h_verify(U .PoA.PoP) then
5: BO .reject → U
6: ABORT
7: BO .credential = BO .gen_socks5_cred()
8: BO .credential → U
9: whileU .session is valid do
10: U ↔ BO // tunnel traffic

11: for every minute do
12: U .taд = U .gen_measurement_tag()
13: [U .ECC+S ,U .taд]siд(U .ECC−

S )
→ BR

Figure 5: Bridge Usage

can be distributed via websites. A solution of an hCaptcha is triv-

ially translated to a result of the corresponding data labeling task.

hCaptcha gathers these results (e.g., across many successful

CAPTCHAs) and sends them back to the third party companies

for compensation; a small portion of this compensation will be

rewarded back to the website that serves hCaptcha. Effectively,

hCaptcha is similar to Google’s reCAPTCHA, but offers payment

to the hosting website (in our case, the broker or bridge operators)

when the human solvable tasks are successfully completed. In §5.8,

we present a brief financial analysis and show that a bridge operator

who contributes 10Mbps of bandwidth can receive $3.55 per day.

HebTor leverages hCaptcha to allow anonymous payment to the

bridge operators (Lines 18-19). One key strength of hCaptcha is that

no contact or payment information is required, and the identity of

the payer (i.e., the Tor user) is completely oblivious to the payee (i.e.,

the bridge operator). Note that hCaptcha currently does not provide

signatures on Proof of Payment (PoP), which slightly deviates from

the ideal case of our protocol. (That is, we compensate for the lack of

signatures on PoPs by having the verifying party explicitly request

proof-of-payments using hCaptcha’s API over Tor.)

Proof of assignment.The broker receives feedback fromTor users

about the bridges, which in turn affects the bridges’ reputations.

This presents an opportunity for a malicious user to increase or

decrease a bridge’s reputation by providing spurious feedback. To

minimize the impact of malicious feedback, HebTor verifies that

the broker randomly assigns bridges to users; this randomization

prevents a malicious user from targeting a specific bridge. Once the

bridge assignment is decided, the broker generates a signed proof of

assignment (PoA) that contains the selected onion address and PoP,

and sends the PoA back to the Tor user (Lines 22-24). The Tor user

then presents the proof of assignment to the bridge operator such

that the bridge operator can verify that the assignment is indeed

made by the broker.

5.5 HebTor Circuit
Figure 5 presents the pseudocode of HebTor’s circuit creation and

reputation update process. Once a bridge receives the PoA from

the user, it verifies the authenticity of the PoA (Lines 2-3), and then

spawns a SOCKS5 server with a newly generated credential and

sends back the credential to the user (Lines 7-8).With this credential,

the user can spawn HebTor circuits towards the exit blocking sites

via the bridge. We call this the HebTor circuit to differentiate it

from traditional Tor circuits. We argue in §6 that the HebTor circuit

provides at least the same user anonymity as a Tor circuit.

An illustration of a regular HebTor circuit is shown in Figure 1.

A SOCKS5 proxy is hosted and configured on the bridge as an onion

service, the local relay serves as the local end point of a HebTor

circuit and listens on a local port to forward traffic between the Tor

Browser and the bridge. The Tor Browser would consider the local

relay as an ordinary SOCKS5 server and the bridge would deem

the local relay as the source of SOCKS5 requests.

Compared with a three-hop regular Tor circuit, HebTor circuits

contain 7 hops, which means the network latency is roughly dou-

bled. An optimization can be achieved by using Tor’s newer Single

Onion Service protocol [55] on the bridge side, which removes

hops between the rendezvous point (RP) and the bridge, making

the length of a Single Onion Service HebTor circuit reduced to

just four hops. We expect that this will decrease the latency over-

head, as it resembles the performance penalty caused by using an

ingress bridge. Note that a user’s anonymity is not harmed when

the exit bridge operates as a Single Onion Service since it still uses

a three-hop anonymous Tor circuit.

To achieve unlinkability, different bridges will be used for differ-

ent sites requested by the Tor user. HebTor implements SOCKS5

routing at the local relay. When a SOCKS5 request comes from

the TorBrowser, the local relay recognizes the destination site and

selects the corresponding bridge to build the HebTor circuit.

5.6 Reputation Update
The goal of the reputation system is to allow the broker to favor

reliable bridges when assigning them to handle users’ requests. To

achieve this goal, the broker maintains a reputation score for each

registered bridge. The intuition is to assign a higher reputation score

to an honest bridge with a good service history while penalizing a

freeloading bridge that rarely forwards data.

Feedback tag. Reputation scores are calculated from user feed-

back. Once a request is proxied through bridges, HebTor’s browser

extension will query the local relay to learn whether the request

is successful. The local relay knows the number of successful re-

quests (#success) and the number of failed requests (#
fail

) during

each minute. If #success − #
fail

≥ 0, an “up” vote will be generated;

otherwise a “down” vote will be cast. The vote will then be signed

and sent to the broker via Tor.

Reputation scores. The broker maintains, for each bridge and

bridge session, a list of up/down votes. A session score, computed for

each of a bridge’s session, is defined as the average of the session’s

up/down votes, where up votes are counted as +1 and down votes

as −1. Finally, the bridge’s overall reputation is the median of its

associated session scores. In brief, an exit bridge’s reputation is

the median of its users’ average up/down scores. We discuss the

robustness of reputation scores against manipulation in §6.
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5.7 Unlinkable Ticket Scheme based on RSA
Blind Signatures

As currently described, a user needs to pass two rounds of HTP

challenges: one for sending a request to the broker (this is needed

to prevent a malicious user from enumerating all bridges); the

other for compensating the bridge operator for the contributed

bandwidth and CPU resources. Such frequent HTP challenges neg-

atively impacts user experience. As an optimization, HebTor uses

an unlinkable ticket scheme based on RSA blind signatures to allow

users to bypass the HTP challenges required for sending bridge

requests to the broker.

At a high-level, the broker will assign tickets to a user when it

sends a request for the first time (the user still needs to complete the

HTP challenge this time), such that the user can use these verifiable

tickets to bypass HTP challenges in the future.

Blind signature. More concretely, a ticket is a tuple (m, s) where
m is a random number generated by the user and s is the broker’s
signature form. To maintain unlinkability between a user’s requests

(and tickets), the user generates a blinding factor r , then sends the

blinded messagem′ =m ∗ re (mod n) to the broker, where n, e are
generated from the broker’s RSA public ticket key. The broker then

signsm′
and returns signature s ′ back to the user. The user can

easily recover the actual signature s form from s ′ using the inverse
of r . When the user needs to spend the ticket, he presents (m, s),
and the broker can verify that s is its signature form. Note that the

broker cannot link s with s ′ since it does not know r .
The blind signature scheme allows a user to have multiple tickets

after completing one round of HTP challenge: the user can simply

generate a list ofm′
and let the broker sign eachm′

in the list at

the same time. In this way, the user can hold multiple valid tickets

for its use in future requests.

Key rotation. To prevent a malicious user from accumulating tick-

ets, the tickets are made to expire after a specific period of time, by

letting the broker rotate its ticket key at a predetermined frequency.

For example, a set of ticket key pairs may only be valid for signature

generation for 1 hour and for signature verification for 2 hours. In

this case, if a user presents an expired ticket, the verification will

fail and the user has to complete the HTP challenge again.

In addition, to prevent double spending of tickets, once a ticket

(m, s) is received by the broker, the broker should putm into a hash

table, indicating that the ticket (identified bym) has been used. If

m appears again, the broker can detect such collision in the hash

table and serve a HTP challenge instead. Since expired tickets will

automatically fail upon ticket key rotation, we can remove entries

from the hash table 2 hours after their insertion.

5.8 Financial Analysis
In this section, we present a brief financial analysis of (1) the size

of the “market", that is, the total potential revenue that could be

earned per day, and (2) the per-person incentive, that is, the total

potential revenue that could be earned by a single bridge operator.

Market cap. Here we assume a 100% penetration rate—users who

cannot access a site that blocks Tor will all choose to use HebTor.

As of January 17, 2020, the aggregated bandwidth observed at Tor’s

exits is 51.64 Gbps [50]. The block rate for Tor’s web traffic is

4.8% [60]. Assuming a 30MB bandwidth cap for each bridge, the

total bridges needed per day is 456,878, translating to $456.88 (USD)

revenue per day based on hCaptcha’s pay rate of $0.001 per solve.

Per-person incentive. Here we assume that a bridge operator is

willing to contribute 10% of its bandwidth to run the bridges. As-

suming a 100Mbps residential network and a 30MB/15mins bridge

configuration, then the number of bridges that can be concurrently

supported is 37. Therefore, the total bridges that could be supported

per day is 3,552, translating to $3.55 per day per bridge operator.

Given the $456.88 market cap and $3.55 revenue per bridge oper-

ator, the market can support up to 128 bridge operators who operate

at their maximum capacity.

6 SECURITY
In this section we discuss several important security properties of

HebTor, and provide informal sketches of their correctness.

Mandatory task completion. Our incentive design requires

that users perform some task (for example, an image labeling task)

that raises some revenue, which in turn is directed (as payments

for service) to the exit bridge operator. We first argue that:

Claim: A user cannot use an exit bridge without first performing

the human task, so long as the broker is not malicious.

Sketch: End users interface with the exit bridge using the

bridge_usage procedure defined in Figure 5. This is the only mech-

anism by which the user can access the exit bridge. In step two of

bridge_usage, the bridge operator checks the signature of the PoA
signed by the broker; if the signature is not valid, bridge_usage
terminates. In step three of bridge_usage, the bridge operator calls
the h_verify function on the proof of payment (PoP). If h_verify
returns ⊥ (i.e., fails to verify), then bridge_usage terminates and

the user cannot use the exit bridge.

A user can use the bridge if and only if (1) the PoA is properly

signed by the broker (see line 22 in bridge_assignment in Figure 4)

and (2) the PoA contains a valid proof of payment (PoP). Note that

the Human Task Provider’s signature over the PoP is verified by

the broker in line 19 of bridge_assignment.
In summary, to use an exit bridge, a user needs to provide a PoA

signed by the broker, which it can only obtain by successfully com-

pleting the bridge_assignment procedure, which in turn depends

on receiving a valid signed PoP from the Human Task Provider. ■

Difficulty of enumerating bridges. Although we do not at-

tempt to provide anonymity to exit bridge operators, HebTor is

most effective when it is difficult for any party to easily enumer-

ate the IP addresses of exit bridges. Such enumeration allows exit

bridges to quickly appear on blacklists.

Claim: HebTor reveals the IP address of an exit bridge only to

(1) Tor relays with which that exit bridge directly communicates

and (2) sites accessed by the exit bridge.

Sketch: Communication between the bridge operator, the broker,

the Human Task Provider, and the end user all occur over anony-

mous Tor connections. The bridge operator does not communi-

cate its IP address in either the operator_register, bridge_advertise,
bridge_assignment, or bridge_usage procedures (see Figures 2

through 5). That is, no component of the HebTor infrastructure
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(not including Tor relays) learns or stores the IP address of the exit

bridge, other than the exit bridge itself.

Therefore, the only exposure of the exit bridge’s IP address oc-

curs when it directly communicates over IP. This happens in two

instances: when the exit bridge uses Tor (i.e., in its communica-

tions with a Tor relay) and when it forwards data on behalf of the

end-user to the requested destination (i.e., website). ■

Unlinkability across requests. Unlinkability requires that an

adversary should not be able to distinguish whether two or more

requests are related [41]. Unlinkability is critical to maintaining

anonymity: by way of example, consider a user who uses an anony-

mity service to connect to two websites, and then discloses its

identity (e.g., by posting a message over an unencrypted HTTP

connection) to exactly one of the two sites. An adversary who

observes traffic at the anonymity network’s egress point and can

link the user’s two anonymous connections can then trivially infer

the sender of the otherwise anonymous communication stream.

In the context of HebTor, our goal is to prevent any party (in-

ternal or external to HebTor) from determining whether two sites

accessed via exit bridges originated from the same end-user. We

group all of the web objects associated with a site into our notion

of a single “request”; this corresponds to the behavior of the Tor

Browser, which uses a separate Tor circuit to achieve unlinkability

between different browser tabs and windows. That is, like Tor, we

aim to provide unlinkability between a client’s requests of two or

more websites.

We first argue that the ticket protocol achieves unlinkability.

Claim: A party who has access to two HebTor tickets cannot de-

termine whether those tickets were issued to the same or different

users.

Sketch: A HebTor ticket contains a single randomly chosen number

m selected by the user who initially generates the (unsigned) ticket.

Letmi denote the random number present in ticket ti .
The user sends only blinded tickets to the broker; the RSA blind

signature scheme guarantees that the broker does not learn the

blinded random value mi selected by the user, for any ticket ti .
An honest-but-curious (semi-honest) broker who obeys the pro-

tocol will return a blind signature to the user, who then unblinds

the signature to obtain the signed ticket (i.e.,m along with its ac-

companying signature). Importantly, the honest-but-curious broker

cannot link two tickets tx and ty as originating from the same user,

since (1) it never learns the random numbersmx andmy and (2)mx
andmy are independent and identically distributed random values.

Since the broker periodically rotates signing keys, it can determine

whether tx and ty originated during the same key period.

A malicious broker can attempt to watermark a given requestor’s

tickets by returning invalid signatures (e.g., signatures over values

chosen by the broker). However, a user detects such misbehavior

by verifying that the returned signature, once unblinded, is over

the user-provided (blinded) inputmi . ■

Claim: HebTor achieves unlinkability between a client’s requests

of two or more websites.

Sketch: For each requested website, the user initiates the

bridge_assignment procedure, obtaining a new proof-of-assignment

(PoA), set of tickets, and (potentially) a new exit bridge (see §5.5).

It is easy to show that, by construction, two or more PoAs are un-

linkable: they contain the onion address of an exit bridge (chosen

independently, with replacement, for each PoA) and a proof-of-

payment (PoP). The PoP is also unlinkable across sessions, as it

contains only a signed session public key, which is used only for

the given session. Above, we previously argued that two or more

tickets are unlinkable.

Each instantiation of bridge_assignment occurs using a new Tor

circuit between the user and the broker. Additionally, the user does

not use consistent identifiers or credentials when communicating

with the broker, and relies only on ephemeral session keys. Because

the broker cannot identify the party with whom it is communicating

(since communication occurs over a dedicated Tor circuit) and there

is no identifying information about the user in an invocation of

bridge_assignment, for any two invocations of bridge_assignment,
the broker cannot distinguish between two different users calling

bridge_assignment and the same user calling the procedure twice.

We next argue that a bridge operator cannot distinguish between

two connections originating from the same user and two connec-

tions each originating from a different user. Interactions between

the user and the exit bridge are governed by the bridge_usage pro-
cedure. Here, the requesting user provides only a PoA—which we

argued above is unique for every requested site.

In bridge_assignment, the user interacts with a Human Task

Provider via the h_challenge procedure. The challenge is served
to the user via a Tor circuit, and hence the challenge service does

not learn the user’s identity. Additionally, since a new Tor circuit is

used for every invocation of bridge_assignment and Tor provides

unlinkability across circuits, then the challenge service cannot de-

termine whether two challenges are associated with the same or

different users.

Finally, the broker can attempt to link user requests using the rep-

utation tags that are sent to the broker (see line 13 of bridge_usage).
The tags consist of the user’s assessment of the exit bridge (ex-

pressed as +1 or −1), a time index, and the user’s session public key;

the tag is additionally signed using the user’s session private key.

As intended by design, tags can thus be linked across a particular

session (i.e., request for a web site). However, since a new session

key is used for each site request, the broker cannot distinguish

whether two tags from two different sessions are produced by the

same or different users. ■

Robustness of reputation scores. The probability that an exit

bridge is assigned to a user is proportional to that exit bridge’s

reputation score. We next argue that reputation scores are robust

against manipulation.

Claim: If (1) the broker is honest, (2)n honest clients and α colluding

malicious clients are connected to amalicious exit bridge, and (3) the

exit bridge forwards traffic only form < n/2 honest clients, then α
must be greater than ⌈n

2
−m⌉ for the exit bridge to obtain a positive

reputation.

Sketch: As computed by the broker, a bridge’s reputation score is

the median of the average of measurements taken by the bridge’s

users. The users’ measurements are communicated in line 13 of

the bridge_usage procedure. Importantly, note that the broker only

accepts measurements from users who have been assigned to that
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bridge, since the user’s session key ECC+S is recorded by the bro-

ker in line 23 of bridge_assignment and the measurements are

signed by the corresponding session private key ECC−
S (line 13 of

bridge_usage).
It follows from the statement of the claim that the malicious exit

bridge will not forward traffic for m̂ = n −m users. Each of the m̂
honest users will contribute a score of −1 to the broker.

To obtain an overall positive reputation score, it then follows

that
m+α

m+m̂+α > 0.5, since the reputation score is the median of the

user-contributed averages. Here, we conservatively assume that all

served honest users and all malicious users assigned to the bridge

will contribute positive rankings of +1 to the broker. Hence, the

fraction of positive scores (m+α ) to total scores (m+m̂+α ) must be

greater than 0.5. Substituting in n =m + m̂ to the above inequality,

we obtain α > ⌈n
2
−m⌉. ■

The implications of the above claim is that as more honest users

(n) are assigned to the malicious exit bridge, the adversary must

either serve a large fraction of the honest users (m) to achieve a

positive reputation, or must operate a large number of malicious

HebTor users who then need to be assigned to the malicious bridge

and successfully complete the human task. At the extreme, if the

adversary does not forward traffic for any honest clients, then to

earn a positive reputation, it needs to operate at least half of the

clients that are assigned to its malicious bridge.

Non-degradation of anonymity. Our goal is to enable Tor

users to access sites that they would otherwise be unable, without

degrading their anonymity. We first consider the case in which the

broker is honest-but-curious, and then explore the ramifications of

a malicious broker.

Claim: If the broker is not malicious, HebTor offers similar

anonymity to that of Tor.

Sketch: All communication between the user and the broker, and

between the user and exit bridge, are conducted over Tor. As argued

above, HebTor sessions are unlinkable and the HebTor protocols

do not include identifying information about the user. A curious

broker therefore cannot discern the identity of the user.

The user and the exit bridge communicate via SOCKS5. Since

the exit bridge operates as an onion service, this communication

is both end-to-end encrypted and, in the case of the exit bridge,

self-authenticating [12].

The user may be assigned to an malicious exit bridge. This hap-

pens with a probability that is proportional to the reputation of the

exit bridge. As shown above, the reputation system is difficult to

manipulate: the adversary needs to operate at least half of the total

clients that connect to its malicious bridge if it does not forward

any traffic for honest clients.

Of course, the adversary can operate bridges with high repu-

tations by participating in the HebTor network and forwarding

traffic. The probability of a user selecting a malicious bridge is thus

proportional to that bridge’s contribution towards the network’s

sum of reputation scores. This is not dissimilar from traditional Tor

exit relays, which are selected proportional to relays’ bandwidth

contributions to the network.

If a malicious bridge is chosen, it cannot trivially identify the

client’s network location, since the client communicates with the

bridge via Tor. However, if the traffic between the client and the

website is not end-to-end encrypted (e.g,. using TLS), then the

bridge can learn the user’s identity if it is revealed in the contents

of the communication. Operating the egress point also significantly

increases the adversary’s ability to de-anonymize users using traffic

correlation attacks [38, 40], which have been shown to be prob-

lematic for Tor [24]. Overall, the risks of selecting a malicious exit

bridge are analogous to those from selecting a malicious exit relay,

when the broker is not malicious. ■

A malicious broker cannot directly learn the identities of the re-

questing users, since users communicate only via anonymous Tor

connections. However, a malicious broker can assign only mali-

cious exit bridges to requesting clients. This is roughly equivalent

to having clients always select a malicious exit relay under Tor, and

thus incurs additional susceptibility to eavesdropping and traffic

correlation attacks, as described above.

As potential future work, we could increase HebTor’s resilience

to malicious brokers by using a more distributed model, akin to

Tor’s authoritative directory architecture. Here, the general concept

would be to have exit bridges register with multiple brokers, who

would then vote on a signed consensus document. The information

theoretic private information retrieval technique suggested by Mit-

tal et al. [35] could then be used to allow users to efficiently obtain

an exit bridge from multiple brokers, while protecting against se-

lective corruption attacks in which a malicious broker purposefully

returns malicious bridges. We leave the exploration of improving

HebTor’s protection against a malicious broker as future work.

7 LIMITATIONS
HebTor bypasses server-side blocking of Tor by permitting any

Internet-connected device to operate as an egress point. Our tech-

nique is targeted at IP-based blocking of exit relays.

A limitation of our design is that it does not completely avoid

fate sharing. Just as Tor exit relays can be added to an IP blacklist, so

can the IP addresses of exit bridges. However, unlike exit relays, exit

bridges reside on end-user devices, and thus are more likely to be

on dynamically assigned IP addresses; this increases the potential

collateral damage of blocking such IPs since overblocking prevents

future potential customers from accessing the site. Additionally,

because they are located on potentially residential/broadband net-

works, it is difficult for a website operator to distinguish between

normal client traffic originating from the residential ISP and Tor

traffic that egresses through the residential ISP. Where such distinc-

tion is possible, HebTor does not eliminate the threat of fate sharing,

since the blocking of an exit bridge disrupts the communication of

all connected Tor users.

As with traditional (ingress) bridges, HebTor bridges are also

susceptible to enumeration. Bridge enumeration is an open problem

for Tor, but it is worth emphasizing that enumeration attacks are

usually enabled by an adversary with a large workforce—e.g., a

nation-state’s intelligence service. Such human resources would

unlikely be available to website or blacklist operators. Additionally,

HebTor offers some protection against automated enumeration

since learning an exit bridge requires first solving an hCaptcha.

Finally, we envision that our incentive scheme will (hopefully)

provide a fresh flow of volunteers to make the effectiveness of such

enumeration attacks short-lived.
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Figure 6: Distribution of HTML similarity scores for various
browsing configurations.

We also note that operating a Tor exit bridge poses similar legal

risks to operating a Tor exit relay. We discuss the current legal

landscape of running a Tor egress point in Appendix A.

8 EVALUATION
Our evaluation aims to answer two main questions: (1) whether

HebTor helps Tor users bypass Tor-exit blocking and (2) what are

the performance penalties of using HebTor.

8.1 Experimental Setup
Bridge configuration. The HebTor exit bridge runs on an Ubuntu

18.04 virtual machine, connected to the Internet through a U.S.-

based home broadband network with an advertised bandwidth ca-

pacity of 100 Mbps. We use microsocks [43] as the backend SOCKS5

server on the bridge, which is hosted as a Tor onion service.

We perform experiments using both the classic onion service

scheme and the newer Single Onion Service design [55] that de-

creases latency by removing three hops from the classic onion

scheme, at the cost of sacrificing receiver anonymity.

User configuration. The simulated user also runs on an Ubuntu

18.04 virtual machine, with Firefox and TorBrowser installed. We

use Selenium [48] as a controller to simulate user browsing behavior.

Experiments are conducted over the live Tor network.

Workload. We select the first 1000 websites from the Alexa Top

sites list as the destination websites throughout our evaluation.

8.2 Functionality Evaluation
To evaluate HebTor’s ability to bypass Tor exit blocking, we use

HTML similarity score [31] to measure the similarity betweenHTML

pages fetched directly (without Tor) versus pages retrieved through

Tor or an exit bridge. The similarity score is between 0 to 1; a higher

score indicates higher similarity between two pages. A similarity

score of 1 indicates two identical pages. If a website blocks traffic

from Tor exits, we should expect a low similarity score between

the directly fetched webpage and the (empty) page retrieved via an

ordinarily Tor circuit.

We consider the following configurations:

• TBB (Local) uses a modified version of the Tor Browser that

communicates to the website directly without using Tor. We

opt for this modified version of the Tor Browser over Firefox

since the Tor Browser has a number of unique features (e.g., a

restricted Javascript engine) that, if ignored (e.g., in the case

of Firefox) would introduce artificial errors in our similarity

scores, since all other configurations use the Tor Browser.

We perform two TBB (Local) fetches to minimize the impact

of dynamic content. The comparison result of these two

fetches is used as our baseline HTML similarity score. Note

that for the following configurations, their similarity scores

are also calculated against the first TBB (Local) fetch.

• TBB (Fixed) uses TorBrowser and visits the destination

through the Tor network. To minimize the effects of localized

web content, we fix the exit relay during the entire experi-

ment, and ensure this relay is in the same geographic region

as the exit bridge used in other configurations.

• TBB (Random) uses TorBrowser and visits the destination

through Tor. The exit relay is randomly selected. This is the

default Tor configuration used by Tor users.

• HebTor (All Traffic) uses TorBrowser and visits the des-

tination through HebTor. All requests, including retrieving
images and other objects, are tunneled through the same

exit bridge.

• HebTor (Non-Target @ Random Exit) uses TorBrowser

and visits the destination through HebTor. Requests for non-

target hosts are routed through a random Tor exit relay. This

is HebTor’s default scenario: a bridge is responsible only for

routing a given user’s traffic to a specific host that blocks

Tor, while all other requests are routed via Tor exit relays.

• HebTor (Non-Target @ Fixed Exit) uses TorBrowser and

visits the destination through HebTor. Requests for non-

target hosts are routed through same fixed Tor exit relay.

We use the same fixed exit relay in the TBB (Fixed) and HebTor

(Non-Target @ Fixed Exit) scenarios.

For each destination website, we first check whether the returned

HTTP status code reported by Selenium is valid, and then check

whether the HTML body is wrapped properly. Invalid status codes

or incomplete HTML bodies will directly lead to a similarity score

of 0. We note that additional objects may still be partially loaded,

since we rely on Selenium’s returned status code corresponding to

the webpage’s main HTML content.

Figure 6 shows the cumulative distribution of similarity scores

for the configurations described above. We observe that the simi-

larity scores of HebTor, especially HebTor (All), closely track the

baseline, and consistently and notably outperform those of TBB.

In addition, we further observe that there is a significant gap

between TBB (Fixed) and TBB (Random)—the former has a much

higher prevalence of low similarity scores. We attribute this to our

selection of the fixed exit relay, which is a high-performing and

longstanding exit relay that is thus more likely to appear on IP

blacklists than the relays we select randomly. This also applies to

the gap betweenHebTor (Non-Target@ Fixed Exit) andHebTor

(Non-Target @ Random Exit).
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Figure 7: Performance overheads.

In summary, we find that HebTor is able to achieve much greater

similarity scores (relative to direct communication) due to its ability

to access sites that would otherwise be inaccessible to Tor users.

8.3 Performance Evaluation
To evaluate the performance overhead, we measure the latency
and loading time when visiting the Alexa Top 1000 websites.

We focus on the performance of the Tor exit bridges rather than

on the cost of contacting the broker. The broker’s responsibility is

to assign bridges and bookkeep the bridges’ reputations; the broker

is not part of the circuit (depicted in Figure 1) and does not impose

any additional delays. We anticipate that the cost in contacting the

broker to be within a few seconds, which is mainly due to solving

an hCaptcha to obtain a proof-of-assignment (PoA). Setting up a

HebTor circuit further takes some time from the arrival of the PoA

to the start of HTTP request, including an onion-service lookup and

one round-trip communication of the PoA submission and SOCKS5

credentials retrieval, followed by a normal SOCKS5 handshake. The

delay caused by the circuit setup is measured to be between 2.5

to 4.0 seconds. However, this startup cost can be eliminated by

having the user construct a pool of ready-to-use HebTor circuits;

this is analogous to Tor’s construction of Tor circuits, which are

established at start time.

We use the PerformanceTimingAPI [61] available both on Firefox

and TorBrowser. Latency is defined as the return time of the first-

byte of response, which isTRespStart−TReqStart, and loading time is
defined as total time for the data transmission, which is T

RespEnd
−

TReqStart. We consider the start and end timestamps of the server’s

response regardless of whether the reply indicates a “block” or not.

On the user side, we deactivate the use of guards to eliminate the

bias introduced by using a fixed guard.

We consider the following four configurations:

• Firefox uses the Firefox browser to visit the destination

website via direct IP communication;

• TBB uses the Tor Browser to visit the destination website

through a Tor circuit;

• HebTor uses the Tor Browser to visit the destination website

through a HebTor circuit; and

• HebTor (One Onion) uses the Tor Browser to visit the des-

tination website through HebTor using the Single Onion

Service scheme.

For each destination, we collect T
latency

and T
loading

for all four

configurations. Figure 7 shows the cumulative distribution of la-

tency (T
latency

) and page loading time (T
loading

). We observe that

the performance of our system with the Single Onion Service is

similar to that of Tor’s, with an increase in median of 0.08s for

T
latency

and 0.13s for T
loading

. HebTor with an ordinary three-hop

Hidden Service is slower, as expected—the increases in median

T
latency

and T
loading

are respectively 0.25s and 0.40s—showing the

tradeoff between performance and server anonymity.

9 CONCLUSION
HebTor bypasses Tor exit blocking by reassigning the job of ex-

iting the Tor network from a collection of fixed exit relays (as

in Tor) to a network of more ephemeral run-from-anywhere exit

bridges. The key insight to HebTor is that exit bridges can join

the Tor network as onion services, allowing nearly any Internet-

connected device to function as an exit bridge. We provide an incen-

tive structure that compensates Internet users for operating HebTor

bridges, and a reputation system to load balance requests and pre-

vent freeloading exit bridges. Our implementation is available at

https://github.com/GUSecLab/tor-exit-relays.
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A LEGAL RISKS OF OPERATING AN EXIT
BRIDGE (OR EXIT RELAY)

Operating an exit bridge incurs risks that are analogous to those of

running an exit relay. Traffic can be misattributed as originating

from the bridge rather than being relayed through it. We briefly

review the legal risks, according to the most current literature, of

forwarding traffic on behalf of an anonymity network. We empha-

size that we are synthesizing others’ legal opinions in this appendix,

and are not formulating any new legal theories of our own. Our

survey is admittedly biased towards the legal systems in the United

States and in Europe.

Minárik and Osula [34] present the most comprehensive analysis

of the legality of anonymity systems, with a particular focus on Tor.

Their legal analysis is based on European Law, and in particular, on

case law from the European Court of Human Rights and the Court

of Justice of the European Union. In their analysis of the legality

of operating Tor exit relays, they found the most pertinent law is

Article 12 of the E-Commerce Directive [15]. Article 12 gives safe

harbor (i.e., legal immunity) to a “service provider” that “. . . (a) does

not initiate the transmission; (b) does not select the receiver of the

transmission; and (c) does not select or modify the information

contained in the transmission. . . ” [15]

Minárik and Osula conclude that operators of Tor exit relays—

and we believe, by equivalent arguments, operators of exit bridges—

clearly meet criteria (a)–(c). The question, which was unanswered

at the time of their 2016 legal analysis, was whether exit relay oper-

ators could be considered service providers, which under European

law, must be “normally provided for remuneration” [14]. That is,

the question of whether safe harbor protections applied to exit relay

operators in Europe hinged on whether the fact that Tor exit relay

operators did not charge for their services negated their ability to

be considered service providers. This question was addressed by

the Court of Justice of the European Union later in 2016, which

found that renumeration is not required for the service provider [7].

There is no law in the United States that specifically governs

the use of Tor or other anonymity networks [54]. Exit relay opera-

tors however frequently receive copyright infringement complaints

under the Digital Millennium Copyright Act (DMCA) [53]. The

Electronic Frontier Foundation (EFF) and others have argued that

Tor operators fall under the DMCA’s safe harbor provisions [13, 39],

which provide immunity so long as the communication is not mod-

ified in transit, the communication did not originate from the relay,

and no copy of the communication is stored [53]. While several

relay operators have received DMCA complaints, EFF reports that

no one has been sued or prosecuted solely for running an exit relay

in the United States [13].

B OTHER FUNCTIONS REFERENCED IN THIS
PAPER

We list all other supplemental functions we referenced in this paper

with their brief pruposes here:

General Processes
• ecc_key_gen() generates an ECC public/private key pair.

• sig_verify(msg, sig, pubKey) verifies whether the signa-
ture sig for a message msg is signed by pubKey.

• h_challenge(payee, user) verifies user is indeed a human

using challenges created by HTP. A proof-of-payment (PoP)

signed by HTP will be returned if the user passes the chal-

lenge and a payment will be accounted towards the payee.
• h_verify(PoP) verifies whether a proof-of-payment (PoP)

is valid. A valid PoP indicates a piece of human work has

been confirmed.

Tor User’s Processes
• U.get_ticket() retrieves a valid unblinded ticket. If no ticket
is available, a list of unsigned tickets will be returned (see

Section 5.7).

• U.gen_measurement_tag() generates QoS measurement

tags during an active traffic forwarding session (see Sec-

tion 5.6).

Human Task Provider (HTP)’s Processes
• HTP.init_record(BO.id) registers the bridge operator (BO)
on HTP using the BO’s. identifier (BO.ECC+).

Broker’s Process
• BR.init_record(BO.id) initializes a new record for bridge

operator (BO.ECC+), with a default reputation.

• BR.advertise(BO.ECC+, BO.onAddr) adds BO’s onion ad-

dress to the broker’s advertising pool; BO’s reputation will

be referenced.

• BR.log_assign(session, BO.id, BO.onAddr)marks the bridge

with onion address BO.onAddr as assigned, and the user in

session has the right to send QoS measurement tag which

may impact the BO’s reputation.

Bridge Operator’s Process
• BO.gen_socks5_cred() generates a clean SOCKS5 creden-

tial for the Tor user to connect to the bridge.
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