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Abstract—Several studies have shown that the network traffic
that is generated by a visit to a website over Tor reveals
information specific to the website through the timing and
sizes of network packets. By capturing traffic traces between
users and their Tor entry guard, a network eavesdropper can
leverage this meta-data to reveal which website Tor users are
visiting. The success of such attacks heavily depends on the
particular set of traffic features that are used to construct the
fingerprint. Typically, these features are manually engineered
and, as such, any change introduced to the Tor network can
render these carefully constructed features ineffective. In this
paper, we show that an adversary can automate the feature
engineering process, and thus automatically deanonymize Tor
traffic by applying our novel method based on deep learning. We
collect a dataset comprised of more than three million network
traces, which is the largest dataset of web traffic ever used for
website fingerprinting, and find that the performance achieved by
our deep learning approaches is comparable to known methods
which include various research efforts spanning over multiple
years. The obtained success rate exceeds 96% for a closed world
of 100 websites and 94% for our biggest closed world of 900
classes. In our open world evaluation, the most performant
deep learning model is 2% more accurate than the state-of-
the-art attack. Furthermore, we show that the implicit features
automatically learned by our approach are far more resilient to
dynamic changes of web content over time. We conclude that
the ability to automatically construct the most relevant traffic
features and perform accurate traffic recognition makes our
deep learning based approach an efficient, flexible and robust
technique for website fingerprinting.

I. INTRODUCTION

The Onion Router (Tor) is a communication tool that pro-
vides anonymity to Internet users. It is an actively developed
and well-secured system that ensures the privacy of its users’
browsing activities. For this purpose, Tor encrypts the contents
and routing information of communications, and relays the
encrypted traffic through a randomly assigned route of nodes
such that only a single node knows its immediate peers, but

never the origin and destination of a communication at the
same time. Tor’s architecture thus prevents ISPs and local
network observers from identifying the websites users visit.

As a result of previous research on Tor privacy, a serious
side-channel of Tor network traffic was revealed that allowed
a local adversary to infer which websites were visited by a
particular user [14]. The identifying information leaks from
the communication’s meta-data, more precisely, from the di-
rections and sizes of encrypted network packets. As this side-
channel information is often unique for a specific website, it
can be leveraged to form a unique fingerprint, thus allowing
network eavesdroppers to reveal which website was visited
based on the traffic that it generated.

The feasibility of Website Fingerprinting (WF) attacks on
Tor was assessed in a series of studies [25], [31], [19], [24],
[32]. In the related works, the attack is treated as a classi-
fication problem. This problem is solved by, first, manually
engineering features of traffic traces and then classifying these
features with state-of-practice machine learning algorithms.
Proposed approaches have been shown to achieve a classifica-
tion accuracy of 91-96% correctly recognized websites [30],
[24], [13] in a set of 100 websites with 100 traces per website.
Their works show that finding distinctive features is essential
for accurate recognition of websites. Moreover, this tasks can
be costly for the adversary as he has to keep up with changes
introduced in the network protocol [4], [20], [9]. The WF
research community thus far has not investigated the success
of an attacker who automates the feature extraction step for
classification. This is the key problem that we address in this
work.

An essential step of traditional machine learning is feature
engineering. Feature engineering is a manual process, based on
intuition and expert knowledge, to find a representation of raw
data that conveys characteristics that are most relevant to the
learning problem. Feature engineering proved to be even more
important than the choice of the specific machine learning
algorithm in many applications, including WF [12], [19].

When developing a new WF attack, prior work on WF
typically focuses on feature engineering to compose and select
the most salient features for website identification. Moreover,
these attacks are actually defined by a fixed set of features
derived from this process. Thus, these attacks are sensitive
to changes in the traffic that would distort those features. In
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particular, deploying countermeasures in the Tor network that
conceal the features is sufficient to defend against such attacks.
This enables an arms-race between attacks and defenses: new
attacks defeat defenses because they exploit features that had
not been considered before and, conversely, new defenses are
designed to conceal the features that those attacks exploited.

In this paper, we propose a novel WF attack based on deep
learning. Our attack incorporates automatic feature learning
and, thus, it is not defined by a particular feature set. This may
be a game-changer in the arms-race between WF attacks and
defenses, because the deep learning based attack is designed
to be adaptive to any perturbations in the features introduced
by defenses. The attack we present in this work is the first
automated WF attack and it is at least as effective as the state-
of-the-art, manual approaches.

The key contributions of our work are as follows:
• Our study provides the first systematic exploration of

state-of-the-art deep learning (DL) algorithms applied
to WF, namely feedforward, convolutional and recurrent
deep neural networks. We design, tune and evaluate
three models – Stacked Denoising Autoencoder (SDAE),
Convolutional Neural Network (CNN) and Long Short-
Term Memory (LSTM). Our DL models are capable of
automatically learning traffic features for website recog-
nition at the expense of using more data. Moreover, we
automate the model selection to find the best network
hyperparameters. We demonstrate that our DL-based WF
attack reaches a high success rate, comparable to the
state-of-the-art techniques.

• We reevaluate prior work on our dataset and reproduce
their results. We find that state-of-the-art WF approaches
benefit from using more training data, similar to DL. As
a result of a systematic comparison of our novel DL-
based methods to previous WF approaches for the closed
and open world settings, we demonstrate comparable
recognition results with slight improvements of up to 2%.
Furthermore, we show that our DL attack reveals more
general and stable website features than the state-of-the-
art methods, which makes them more robust to concept
drift caused by highly dynamic web content.

• The dataset collected for the evaluation is the largest WF
dataset ever gathered to date. Our closed-world dataset
consists of 900 websites, with traffic traces generated by
2,500 visits each. Our open-world dataset is based on
400,000 unknown websites and 200 monitored websites.
We made the generated dataset publicly available, allow-
ing researchers to replicate our results and systematically
evaluate new (DL) approaches to WF1.

The paper is structured as follows. In Section II, we discuss
related work on WF and the use of DL. Section III presents
the threat model and the capabilities an adversary has for WF.
The data collection process is outlined in detail in Section IV.
Section V provides a reevaluation of state-of-the-art attacks

1The dataset and implementation can be found on the following URL:
https://distrinet.cs.kuleuven.be/software/tor-wf-dl/.

on our dataset and the overall deep learning approach and
evaluation. We discuss the results and limitations of our work,
as well as opportunities for future research, in Section VI.
Section VII concludes by summarizing our main findings.

II. BACKGROUND

This section reviews recent related work on Tor WF attacks
relying on traditional machine learning algorithms, and the
application of deep learning.

Anonymous communications systems such as Tor [11] pro-
vide confidentiality of communications and conceal the desti-
nation server’s address from network eavesdroppers. However,
in the last decade, several studies have shown that, under
certain conditions, an attacker can identify the destination
website only from encrypted and anonymized traffic.

In WF, the adversary collects traffic from his own visits
to a set of websites that he is interested in monitoring,
visiting each site multiple times. Next, the adversary builds a
website template or fingerprint from the traffic traces collected
for that site. The fingerprints are built using a supervised
learning method that takes the traffic traces labeled as their
corresponding site, extracts a number of features that identify
the site and outputs a statistical model that can be used for
classification of new, unseen traffic traces. Finally, the attacker
applies the classifier on unlabeled traffic traces collected from
communications initiated by the victim and makes a guess
based on the output of the classifier. To be able to deploy
the attack, the adversary must be able to observe the traffic
generated by the victim and be able to identify the user (see
Section III for more details on the threat model).

The first WF studies evaluated the effectiveness of the
attack against HTTPS [8], encrypted web proxies [27], [16],
OpenSSH [22] and VPNs [14] and it was not until 2009 that
the first evaluation of a WF attack was performed in Tor [14].
This first attack in Tor was based on a Naive Bayes classifier
and the features were the frequency distributions of packet
lengths [14]. Even though their evaluation showed the attack
achieved an average accuracy of only 3%, the attack was
improved by Panchenko et al. using a Support Vector Machine
(SVM) [25]. In addition, Panchenko et al. added new features
that were exploiting the distinctive burstiness of traffic and
increased the accuracy of the attack to more than 50%.

These works were succeeded by a series of studies that
claimed to boost the attacks and presented attacks with more
than 90% success rates. First, Cai et al. [5] used an SVM with
a custom kernel based on an edit-distance and achieved more
than 86% accuracy for 100 sites. The edit distance allowed for
delete and transpose operations, that are supposed to capture
drop and retransmission of packets respectively. Following a
similar approach, Wang and Goldberg [31] experimented with
several custom edit distances and improved Cai et al.’s attack
to 91% accuracy for the same dataset.

However, these evaluations have been criticized for making
unrealistic assumptions on the experimental settings that give
an unfair advantage to the adversary compared to real attack
settings [19]. For instance, they evaluated the attacks on small
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datasets and considered adversaries who can perfectly parse
the traffic generated by a web-page visit from all the traffic
that blends into the Tor network. Furthermore, they assume
users browse pages sequentially on one single browser tab
and never interrupt an ongoing page-load. Recent research
has developed new techniques to overcome some of these
assumptions, suggesting that the attacks may be more practical
than previously expected [32].

The three most recent attacks in the literature outperform
all the attacks described above and, for this reason, we have
selected them to compare with our DL-based attack. Each
attack uses a different classification model and feature sets
and work as follows:

Wang-kNN [30]: this attack is based on a k-Nearest Neigh-
bors (k-NN) classifier with more than 3,000 traffic features.
This large amount of features is obtained by varying the
parameters of set of fewer feature families. For instance, the
number of outgoing packets in spans of X packets and the
lengths of the Y packets in the same direction. In order
to mitigate the curse of dimensionality, they proposed to
weigh the features of a custom distance metric, minimizing
the distance among traffic samples that belong to the same
site. Their results show that this attack achieves 90% to 95%
accuracy on 100 websites [30].

CUMUL [24]: CUMUL is based on an SVM with a Radial
Basis Function (RBF) kernel. CUMUL uses the cumulative
sum of packet lengths to derive the features for the SVM.
The cumulative sum is computed by adding the lengths of
outgoing packets and subtracting the lengths of incoming
packets. However, since the RBF kernel, in contrast to the
aforementioned edit-distance based SVM kernel, expects fea-
ture vectors to have the same dimension, they interpolated 100
points from the cumulative sums. Furthermore, they prepend
the total incoming and outgoing number of packets and bytes.
As a result, they ended with 104 features to represent a traffic
instance. Their evaluations demonstrate an attack success that
ranges between 90% and 93% for 100 websites. It is worth
mentioning that their dataset is the most realistic up to the date,
including inner pages of sites that have spikes of popularity
such as Google searches or Twitter links. Despite the high
success rate of their attack, the authors conclude that the WF
attack does not scale when applied in a real-world setting,
as an adversary would need to train the classifier on a large
fraction of all websites.

k-Fingerprinting (k-FP) [13]: Hayes and Danezis’s k-FP
attack is based on Random Forests (RF). Random Forests are
ensembles of decision trees that are randomized and averaged
so that they can generalize better than simple decision trees.
Their feature sets include 175 features developed from features
available in prior work, as well as timing features that had
not been considered before, such as the number of packets
per second. The random forest is not used to classify but
as a way to transform these features into a different feature
space: they use the leafs of the random forest to encode a
new representation of the sites they intent to detect that is

relative to all the other sites in their training set. Next, the
new representation of the data is fed to a k-NN classifier for
the actual classification. Their results show that this attack is
as effective as CUMUL and achieves similar accuracy scores
for the same number of sites.

All these attacks have selected their features mostly based
on expertise and their technical knowledge on how Tor and
the HTTP protocol work and interact with each other. As
a result of manual feature engineering and standard feature
selection, each proposed attack can be represented by a set of
fingerprinting features. It is still unknown whether WF can be
successfully deployed through automatic feature engineering
based on implicit uninterpretable traffic features.

To the best of our knowledge, the only research that suc-
cessfully applies deep learning to a similar problem is the net-
work protocol recognition on encrypted traffic with a Stacked
Denoising Autoencoder (SDAE) done by Wang [34]. His ap-
proach achieves a 90% recognition rate, which is a promising
indicator for deep learning application to anonymized traffic.

The first effort to apply a DL-based approach to WF was
made by Abe and Goto [1], where they evaluated a SDAE on
the Wang-kNN’s dataset. Their classifiers do not outperform
the state-of-the-art, but nevertheless achieve a convincing 88%
on a closed world of 100 classes. It is fair to assume that the
lower performance is due to the lack of a sufficient amount
of training data for a deep neural network, which, as we
confirm later in our paper, is essential for the deep learning
performance. Moreover, the work does not assess applicability
of other deep learning algorithms to the problem. In this
paper we explore three deep learning methods when applied
to a significantly larger closed world of varying sizes, trained
on sufficient amounts of data and evaluated in context of
dynamic changes of web content over time. We provide a more
extensive tuning of the DL-based attacks and finally achieve
a similar accuracy to the state-of-the-art WF attacks.

III. THREAT MODEL

In this paper we consider an adversary similar to the
one considered in prior work in WF, namely a passive and
local network-level adversary. Figure 1 shows an overview of
this WF scenario. A passive adversary only records network
packets transmitted during the communication and may not

Fig. 1: The client visits a website over the Tor network. The
adversary can observe the (encrypted) traffic between the client
and the entry to the Tor network.

3



modify them or cause them to drop, and may not insert
new packets into the stream of packets. A local adversary
has a limited view of the network. In particular, in Tor,
such an adversary typically owns the entry node to the Tor
network (also known as entry guard), or has access to the
link between the client and the entry. Examples of entities
that have this level of visibility range from Internet Service
Providers (ISP), Autonomous Systems (AS) or even local
network administrators. Note that an adversary that owns the
entry guard can decrypt the first layer of encryption and access
Tor protocol messages. In this work, we assume an ISP-level
adversary that collects traffic at the TCP layer and infers the
cells from TCP packets [31]. Obviously, all work on WF
assumes the adversary cannot decrypt the encryption provided
by Tor, as message contents would immediately reveal the
identity of the website.

In the WF literature, it is common for the evaluation of
the attack to assume a closed world of websites. This means
that the user can only visit pages that the adversary has been
able to train on. This assumption, commonly known as the
closed-world assumption, has been deemed unrealistic [25] as
the size of the Web is so large that an adversary can only train
on a tiny fraction of the Web. For this reason, many studies
have also evaluated the more realistic open world, where the
user is allowed to visit pages that the adversary has not trained
on. The closed world is still useful to compare existing attacks
and defenses. In this study, we evaluated both the closed world
and the open world.

IV. DATA COLLECTION

One of the prerequisites for deep learning is an abundance
of training data required to learn the underlying patterns.
Processing sufficient amounts of representative data enables
the deep neural network to not only precisely reveal the
identifying features but also generalize better to unseen test
instances. In prior work on WF in the context of Tor, the
datasets that were collected are relatively limited in size, both
in terms of classes (i.e. the number of unique websites) as well
as instances (i.e. the number of traffic traces per website). To
properly evaluate our proposed deep learning approach and
explore how existing models can benefit from extra training
data, we used a distributed setup to collect various new datasets
that accommodate these requirements.

A. Data collection methodology

For the data collection process, we used 15 virtual machines
on our OpenStack-based private cloud environment. Each
VM was provisioned with 4 CPUs and 4GB of RAM. To
each VM, 16 worker threads were assigned, which each had
their separate tor process (version 0.2.8.11). Page-visit tasks,
consisting of starting the Tor browser (version 6.5) and loading
the target web page, were then distributed among the 240
concurrent worker threads. Web pages were given 285 seconds
to load, before the browser was killed and the visit marked
as invalid. Upon loading the page, it was left open for an

additional 10 seconds, after which the browser was closed and
any profile information was removed.

By leveraging network namespaces and tcpdump, we iso-
lated and captured the traffic of each tor process. Due to stor-
age constraints, and since the packet payloads are encrypted
and thus do not have value for the adversary, we extract meta-
data from the traffic trace and discard the encrypted payload.
More precisely, we capture (1) the timing information, (2) the
direction and (3) the size of the TCP packet. We follow the
approach proposed by Wang and Goldberg [31] to extract Tor
cells from the captured TCP packets. Our final representation
of the traffic trace is a sequence of cells, where each cell is
encoded as 1 when transmitted from the client to the website
and as −1 when captured in the opposite direction. For the
purpose of sanity checks and validation, information on the
Tor circuit that was used for the page visit is also recorded.

It should be noted that, in contrast to prior work [31], the
Tor entry guard node was not pinned over the course of our
experiments. The reason for this is twofold. First, compared
to prior data collection, we use significantly more concurrent
processes. If the same entry guard would be used by the
240 browser instances, this could overload the entry guard,
possibly affecting the network traces. Second, by using a
variety of entry guards, the trained models are agnostic to the
intrinsics of a specific entry guard. This means that the model
of the adversary is not only applicable in a targeted attack on
a single victim, but can be launched against any Tor user.

B. Datasets

Since the WF adversary’s goals might vary widely and as
there are no statistics about which pages Tor users browse
to, there can be no definitive set of sensitive websites for
WF research. Moreover, since we aim to compare various
approaches with each other, the actual choice of websites is
not essential as long as it is consistent. The list of websites
we chose for our evaluation comes from the Alexa Top Sites
service, the source widely used in prior research on Tor.

In total, we evaluate our deep learning approach in compar-
ison with traditional methods on three different datasets. This
section details how these datasets were chosen and obtained.

1) Closed world: For the dataset under the closed world
assumption, we collected up to 3,000 network traces for visits
to the homepage of the 1,200 most popular websites according
to Alexa. The list of popular websites was first filtered to
remove duplicate entries that only differ in the TLD, e.g. in
the case of google.com and google.de, only the former
was included in the list. Data for these 1,200 websites was
collected in four iterations, consisting of 300 websites each.
An iteration was again split up into 30 batches, with each batch
performing 100 network traces per websites. After each batch,
the 240 tor processes were restarted and data directories
were removed, forcing new circuits to be built with (new)
randomly selected entry guards. Network traces for each of
the four iterations were collected over approximately 14 days
per group, starting from January 2017.
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After collecting data on the 3.6 million page visits, we
filtered out invalid entries, which were due to a timeout, or
a crash of the browser or Selenium driver. Websites with a
high amount of invalid page visits were removed from our
dataset. Additionally, using the similarity hash of the web
page’s HTML content [7] and the perceptual hash of the
screenshot [3], we detected and excluded websites with exactly
the same content. Moreover, we filtered out websites that had
no content, denied all requests coming from Tor, or showed
a CAPTCHA for every visit. Finally, we balanced the dataset
to ensure the uniform distribution of instances across different
sites by fixing the same number of traces for every site. After
this filtering process, our biggest closed world dataset consists
of 900 websites, with 2,500 valid network traces each. In
the remainder of the text, we refer to this dataset as CW900.
Similarly, for datasets that are composed of a subset of this
one we use a corresponding representation: the datasets for
the top 100, 200 and 500 websites are referred to as CW100,
CW200 and CW500 accordingly.

2) Revisit over time: For the top 200 websites, we obtained
additional periodic measurements. More precisely, for these
websites we collected 100 test network traces per website 3
days, 10 days, 4 weeks, 6 weeks and 8 weeks after the end
of the initial data collection for these 200 websites. Each test
set is collected within one day. As a result, our revisit-over-
time dataset provides 500 network traces for each of the top
200 websites collected over a 2-month period (CW200 was
collected over 2 weeks).

3) Open world: Since the open world data is only used for
testing purposes (which differs from some of the open world
evaluations), we collected only a single instance for each page
in the open world. In total, we collected network traces for the
top 400,000 of Alexa websites.

We collected additional 2,000 test traces for each website
of the monitored closed world CW200 (400,000 instances in
total). As a result, we conduct the open world evaluation on
800,000 test traffic traces, half from the closed world and half
from the open world (a 4-fold increase compared to the largest
dataset considered in prior work [13], [24]). We provide the
motivation for this experimental setting in Section V-B5.

C. Ethical considerations & data access

For our data collection experiments, we performed around 4
million page visits over Tor. It is highly unlikely that this had
any impact on the top websites, which each receive multiple
millions of requests every day. We consider the impact on the
Tor network to be limited as well: The Tor Project estimates
that during the time we performed our experiments, approx-
imately 2 million clients were concurrently connected to the
Tor network. As such, the 240 clients we used are only a minor
fraction of the total number of active clients. Furthermore,
we made the data publicly available upon acceptance of this
paper, allowing other researchers to evaluate other approaches
without having to collect new data samples.

V. EVALUATION

In this section, we conduct a reevaluation of the state-of-the-
art WF methods discussed in the related work of Section II to
confirm their reproducibility on our dataset. We then evaluate
the proposed attacks based on the three chosen deep learning
(DL) algorithms and compare them to the previously known
techniques.

A. Reevaluation of state-of-the-art

We aim to enable a systematic comparison between our
work and that of Wang et al. [30], Panchenko et al. [24] and
Hayes et al. [13], not only to guarantee a fair assessment by
evaluating on new data, but also to analyze (1) the practical
feasibility of the attack on a significantly larger set of websites,
(2) the impact of collecting more instances or traces per
website on the classification accuracy, and (3) the resilience
of trained models to concept drift with a growing time gap
between training and testing.

The goal of the first closed world experiment is to confirm
whether we can reproduce the three WF attacks of prior
work [30], [24], [13] and to assert whether we obtain sim-
ilar classification results as those reported by the respective
authors, but on a different training and testing dataset similar
in size. We reuse the original implementation of the authors to
carry out the feature extraction and subsequently execute the
training and testing steps. All results reported in this section
are computed via 10-fold cross-validation.

The following results were obtained on a Dell PowerEdge
R620 server with 2x Intel Xeon E5-2650 CPUs, 64GB of
memory and 8 cores on each CPU with hyperthreading,
resulting in 32 cores in total each running at 2GHz. Wang’s
k-NN based attack ran on a single core as the stochastic
gradient descent method to find the best weights for k-NN
classification could not be parallelized without sacrificing
some classification accuracy. Panchenko’s CUMUL attack
trains an SVM model which requires a grid search to find
the best C and γ parameter combination for the RBF kernel.
As the native libSVM library is not multi-core enabled, the
parameter combination tests ran as parallel processes each on
a single core, with the time reported being the one of the
slowest C and γ parameter combination test.
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Fig. 2: Re-evaluation of traditional WF attacks on new data
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Figure 2 shows the closed world classification accuracy
obtained through cross-fold validation for the three traditional
WF attacks on a CW100 dataset with 100 traces per website.
For the same set of website instances, the k-NN algorithm of
Wang et al. reports a classification accuracy of 92.87% on our
new data set, whereas the CUMUL algorithm of Panchenko
et al. and the k-FP attack by Hayes et al. respectively report
accuracy results of 95.43% and 92.47%. The obtained results
are in line with those originally reported by the authors
themselves albeit on other data sets. For this particular setup,
the CUMUL WF attack turned out to be the most accurate.

In the second experiment, we evaluate the same traditional
methods on 100 websites, but with a growing number of traces
per website, to investigate whether the classification accuracy
improves significantly when provided with more training data
and whether one WF attack method is consistently better than
another.
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Fig. 3: Impact on the classification accuracy for a growing
number of website traces

In Figure 3, we depict the classification accuracy in a closed
world experiment where the number of website instances
grows from 100 to 1,000 traces. Our results show that the
CUMUL attack consistently outperforms the two other meth-
ods. For all methods, the improvement becomes less evident
after about 300 website traces. Another interesting observation
is that each WF attack − when given sufficient training data
− converges to a classification accuracy of approximately 96-
97%. However, we experienced scalability issues with the k-
NN based attack by Wang et al., given that the classification
running times were at least an order of magnitude higher than
those of the CUMUL and k-FP attacks.

In a third experiment, we assess how the classification
accuracy drops when the number of websites increases for
a fixed amount of training instances. Given that the CUMUL
attack consistently outperformed the other two methods on our
dataset, and was superior in resource consumption, we only
report the results for CUMUL. We reevaluate the CUMUL
classifier on our closed worlds CW100, CW200, CW500 and
CW900 with a fixed number of traffic traces: 300 per website.

Table I illustrates that the CUMUL attack obtains a reason-
able 92.73% 10-fold cross-validation accuracy for 900 web-
sites using 300 instances each, and a parameter combination

of log2(C) = 21 and log2(γ) = 5. In general, we observe
that the performance degrades gradually with a growing size
of the closed world. Moreover, doubling the initial amount of
instances gives an advantage of up to 2%, while the amounts
higher than 300 stop providing any significant improvement.
The biggest weakness is that for each experiment one must
execute the grid search to ensure the best classification results,
and certain parameter combination tests take a long time to
converge with no guarantee of a gain in accuracy.

TABLE I: CUMUL accuracy for a growing closed world (with
100 traces per website, 300 traces, and the best achieved
accuracy for a varying number of traces).

Dataset CUMUL (100tr) CUMUL (300tr) CUMUL (best)
CW100 95.43% 96.85% 97.68% (2000tr)
CW200 93.58% 95.93% 97.07% (2000tr)
CW500 92.30% 94.22% 95.73% (1000tr)
CW900 89.82% 92.73% 92.73% (300tr)

TABLE II: Time required to find optimal RBF parameter
values for C and γ for SVM based classification.

Traces CW100 CW200 CW500 CW900

100 3 min 8 min 139 min 771 min
200 10 min 48 min 684 min 3027 min
300 19 min 99 min 1230 min 4031 min
400 29 min 134 min 1490 min > 6000† min
500 34 min 169 min 1541 min > 6000† min
1000 41 min 844 min 5016 min > 6000† min
2000 41 min 844 min 5016 min > 6000† min

†Aborted experiments.

Table II gives an overview of the running times (in minutes)
to find the best C and γ parameter values for the RBF kernel.
We aborted those experiments where the grid search took more
than four days to complete. While there is a trend of increasing
values for these parameters with a growing number of websites
and instances, we could not find a strong correlation that would
enable us to eliminate the grid search altogether.

As a result, we choose CUMUL as the reference point for
comparing our proposed method with the state-of-the art. This
decision is driven by the fact that CUMUL performed the
best on our closed worlds, and proved to be more practically
feasible. We acknowledge that the k-FP attack has the potential
to work better in our open world evaluation. However, over
the course of our scalability experiments, k-FP did not scale
to 50,000 training instances. The experiment consumed more
than 64GB memory and took longer than the allocated 4 days,
and thus was aborted.With our open world datasets consisting
of 800,000 instances (and 400,000 training instances), such
high resource consumption demands strongly limit large scale
evaluation. CUMUL on the other hand scales up to 400,000
training instances. Therefore, we further evaluate our DL-
based approach in comparison to CUMUL, which outper-
formed the other traditional WF techniques and which was
practically feasible on a larger scale.
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B. Deep Learning for Website Fingerprinting

Here we provide a detailed outline of our DL-based method-
ology. DL provides a broad set of powerful machine learning
techniques with deep architectures. Deep neural networks
(DNN), which underlie DL, exploit many layers of non-linear
mathematical data transformations for automatic hierarchical
feature extraction and selection. DNN demonstrate a superior
ability of feature learning for solving a wide variety of tasks.
In this study we apply three major types of DNNs to WF:
a feedforward SDAE, a convolutional CNN and a recurrent
LSTM.

1) Problem definition: In our proposed method, we follow
prior work and formulate WF as a classification problem.
Namely, we perform a supervised multinomial classification,
where we train a classifier on a set of labeled instances and
test the classifier by assigning a label out of a set of multiple
possible labels to each unlabeled instance. In WF, a traffic trace
t captured from a single visit to a website is an instance of the
form (ft, ct), where ft is the feature vector of the traffic trace
and ct is the class label that corresponds to the website that
generated this traffic. Assuming a closed world of N possible
websites, label ct belongs to the set {0, 1, . . . , N−1}. As such,
we state the WF problem as follows: assign a class label to
each anonymous traffic trace in a dataset based on its features.

The classifiers used in related work successfully solved
this problem by carefully constructing feature vectors, as
described in Section II. Our proposed classifier, based on a
DNN, integrates feature learning within the training process,
enabling it to classify traffic traces simply based on their initial
representation. Thus, for a DL classifier, the form of the input
instance changes to (rt, ct), where rt is a raw representation
of a traffic trace that can be interpreted by a neural network.

In essence, we represent a traffic trace as a sequence of
successive Tor cells that form the communication between
the target user and the visited website. As a result, an input
instance of our DNN-based classifier is a series of 1 and −1
of variable length, based on which model performs feature
learning and website recognition. Our choice of this format is
also supported by the fact that neural networks generally work
with real numbers from the compact interval [−1, 1] due to the
nature of the mathematical operations they perform. Moreover,
by providing the input data in such a format, we avoid having
to rescale and/or normalize the values and thus mitigate a
possible information loss coupled with the preprocessing step.

Out of all existing types of DNNs and corresponding DL
algorithms, we evaluate three major types of neural networks:
feedforward, convolutional and recurrent. We choose to apply
the models that provide the capabilities and architectural char-
acteristics to perform the task of automated feature extraction
and to benefit from the nature of our input data. We refer to
the Appendix for a more elaborate and in-depth discussion on
the DL algorithms, which we consider to be conceptually the
most well-suited for the WF task at hand.

The first DNN we apply is a classifier called Stacked
Denoising Autoencoder (SDAE) – a deep feedforward neural

network composed of Denoising Autoencoders (DAE). An Au-
toencoder (AE) is a feedforward network specifically designed
for feature learning through dimensionality reduction. Stacking
multiple AEs as building blocks to form a deep model allows
for hierarchical extraction of the most salient features of the
input data and performing classification based on the derived
features, which makes SDAE a promising model for our WF
problem.

The next proposed DNN is a Convolutional Neural Network
(CNN) – a classifier built on a series of convolutional layers.
Convolutional layers are also used for feature extraction,
starting with low-level features at the first layer and building
up to more abstract concepts going deeper in the network.
CNN’s methodology for achieving that differs from that of
SDAE. Convolutional layers learn numerous filters that reveal
regions in the input data containing specific characteristics.
These input instances are then downsampled with the special
regions preserved. In such a way the CNN searches for
the most important features to base the classification on.
Furthermore, while SDAE has to be pretrained block by block,
CNN requires minimum preprocessing.

The final chosen DNN is yet another type of a neural
network, very different in its fundamental properties from
the first two. A classifier called Long-Short Term Memory
network (LSTM) is a special type of a recurrent neural network
that has enhanced memorization capabilities. Its design allows
for learning long-term dependencies in data, enabling the
classifier to interpret time series. Our input traffic traces are
essentially time series of Tor cells, and temporal dynamics
in these series are expected to be highly revealing of the
contained website fingerprint, thus the choice of the model.

We used Keras[10] with Theano[28] backend for the
implementation of the DNN classifiers. The source code is
publicly available on the following webpage: https://distrinet.
cs.kuleuven.be/software/tor-wf-dl/.

2) Hyperparameter tuning and model selection: The adver-
sary has to empirically select a DNN model to apply for WF.
For that, the adversary should tune the hyperparameters of the
DNN to achieve the best classification performance and, at
the same time, enhance its capabilities to generalize well to
unseen traffic traces.

Performing an automatic search of the best hyperparameters
– be that an exhaustive grid search, a random search or another
search algorithm – is highly effective but computationally
expensive at the same time. In our work, we evaluate the
DL algorithms applied to WF by performing semi-automatic
hyperparameter tuning, where we exploit the knowledge of
each hyperparameter’s impact. Namely, the main strategy is
as follows:

• The adversary chooses a representative subsample of the
given dataset and splits it randomly into training set,
validation set and test set in the following proportion:
90% - 5% - 5%

• Next, the adversary defines the limits of the model capac-
ity based on the amount of available training data. On the
one hand, the model has to be expressed with a sufficient
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amount of parameters in order to be able to learn the
problem. On the other hand, there has to be much fewer
trainable parameters than available training instances in
order to avoid overfitting. The model’s capacity is defined
through its structure and hyperparameters, different for
each DNN. The adversary has to define the search spaces
for each hyperparameter.

• In our evaluation a special form of Bayesian optimiza-
tion is applied for hyperparameter tuning, specifically
a Tree of Parzen Estimators (TPE)[2] implemented in
hyperopt library. Through this algorithm the adversary
automates the tuning process within previously defined
search spaces.

• The optimization algorithm returns the best combination
of values and the network structure based on the test re-
sults. If the adversary finds the model’s test performance
satisfactory, he selects this model. Otherwise, he adjusts
the search spaces and repeats the tuning procedure.

• Finally, the adversary builds and initializes the selected
learning model and applies it to the whole dataset to
deploy the actual WF attack.

Traditional machine learning methods used for WF in the
related work (such as SVM, k-NN and RF, as presented
in Section II) also require hyperparameter tuning, but on a
smaller scale than DL. Nevertheless, tuning the parameters of
the DL model becomes even more feasible in comparison to
traditional models due to the parallelism of DL algorithms. As
learning algorithms of neural networks are inherently parallel,
graphical processing units (GPUs) can take advantage of this
characteristic. Performing hyperparameter tuning on GPUs
compromises for intense computational requirements allows
for rapid feedback of the model. For our DL experiments we
use two Nvidia GeForce GTX 1080 GPUs with 8GB memory
and 2560 cores each and one TITAN Xp with 12GB memory
and 3840 cores to accommodate parallelized training of the
DNNs. The training runtime reported in this paper should
therefore be interpreted in association with said platforms.

Table III includes the list and the values of the hyperparame-
ters we tuned, together with the corresponding intervals within
which we vary the values. Each hyperparameter controls a
certain aspect of the DL algorithm: architecture (structural
complexity of the network), learning (the training process) and
regularization (constraint of the learning capabilities applied
order to avoid overfitting, which occurs when the model
memorizes the training data instead of learning from it). Note
that in order to reduce the search space, we limited our models
to the same learning and regularization parameters for each
network layer.

The adversary is supposed to select the DL-based model
once given a sample crawled for a desired closed world of
websites. Similarly, we perform the model selection on the
CW100 dataset, as defined in Section IV, in order to limit the
computational requirements. Given a proper tuning procedure
and a sufficiently large amount of training instances for each
class, the chosen model is expected to learn the problem (learn
to extract the fingerprints), and at the same time generalize

well to the other closed world datasets. In fact, the adversary
capable of crawling large amounts of data can compensate on
hyperparameter tuning.

The final selected models of SDAE, CNN and LSTM used
for evaluation are described in Table III. The amount of
LSTM units has to be adjusted for the bigger closed worlds
to increase expressive capacity. Note that due to the LSTM’s
backpropagation through time constraints, we have to trim the
traffic traces to the first 150 Tor cells (we elaborate on the
reason for that in Appendix).

Further in this subsection we present the experimental
results of the DL-based WF attack on the crawled dataset.
Namely, we evaluate the three chosen DNNs on the closed
worlds of various sizes and on the open world. We also assess
their generalization capabilities by testing their resilience to
concept drift on data periodically collected over 2 months.
Furthermore, we compare results to CUMUL, being the most
accurate traditional WF method.

3) Closed world evaluation: In this study, we evaluate the
SDAE, CNN and LSTM networks on four closed worlds of
different sizes, namely CW100, CW200, CW500 and CW900.
We use the models selected by performing hyperparameter
tuning on the CW100 dataset, according to the aforementioned
methodology. To ensure the reliability of our experiments,
we estimate the models’ performance by conducting a 10-
fold cross-validation on each dataset. We use two performance
metrics to evaluate and compare the models with each other:
the test accuracy (classification success rate, which needs to be
maximized) and the test loss (a cost function that reflects the
significance of classification errors made by the model, namely
the categorical cross-entropy, that needs to be minimized, as
explained in the Appendix).

The aspect that had the greatest impact on the performance
over the course of our experiments was the amount of training
data (i.e. the amount of traffic traces for each website), which
is in line with our expectations and justifies the extensive
data collection. Indeed, for every closed world experiment,
we observed significant improvements for a growing amount
of traces. One example of this trend is given in Figure 4 for the
CW100 dataset, where we vary the amount of instances from
100 to all available 2,500 per class. The Table IV reports on
the actual metrics’ values and the corresponding runtimes.

First and foremost, from these results we can confirm the
feasibility of the WF attack based on a DL approach with
automatic feature learning. We observe how classification
accuracy and loss function gradually improve for all models,
in the end reaching the 95.46, 96.66 and 94.02% success rate
for SDAE, CNN and LSTM model accordingly. These results
are comparable to the ones achieved by traditional approaches
in Section V-A.

If we compare the three DNNs with each other, we observe
that the SDAE and CNN networks consistently perform better
than the LSTM in terms of classification accuracy, with CNN
being the most performant. Nevertheless, knowing that the
LSTM classifies traffic traces based solely on their first 150 Tor
cells (compared to the SDAE and CNN that use up to 5,000
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TABLE III: Tuned hyperparameters of the selected DL models.

SDAE CNN LSTM
Hyperparameter Value Space Value Space Value Space

optimizer SGD SGD, Adam RMSProp SGD, Adam RMSProp SGD, Adam
RMSProp RMSProp RMSProp

learning rate 0.001 0.0001 .. 0.1 0.0011 0.0009 .. 0.0025 0.001 0.0001 .. 0.1
decay 0.0 0.0 .. 0.9 0.0 0.0 .. 0.9 0.0 0.0 .. 0.9

batch size 32 8 .. 256 256 8 .. 256 128 32 .. 256
training epochs ≤30 1 .. 100 3-6 1 .. 20 ≤50 1 .. 100

number of layers 5 3 .. 7 8 6 .. 10 4 3 .. 6
input units 5000 200 .. 5000 3000 200 .. 5000 150 70 .. 1000

hidden layers units 1000, 500, 300 200 .. 3000 — — 64, 64 / 128, 128 64 .. 256
dropout 0.1 0.0 .. 0.5 0.1 0.0 .. 0.5 0.22 0.0 .. 0.5

activation tanh tanh, sigmoid, relu relu tanh, relu tanh tanh, sigmoid, relu
pretraining optimizer SGD SGD, Adam — — — —

pretraining learning rate 0.1 0.01 .. 0.1 — — — —
kernels — — 32 4 .. 128 — —

kernel size — — 5 2 .. 50 — —
pool size — — 4 2 .. 16 — —

TABLE IV: Accuracy, loss and runtime of the DL models (SDAE, CNN, LSTM) for CW100 and a growing number of traces.

SDAE CNN LSTM
Traces Accuracy Loss Runtime Accuracy Loss Runtime Accuracy Loss Runtime
100 85.00% 0.5902 0 min 81.25% 0.8276 0 min 40.60% 2.2132 9 min
200 87.30% 0.5252 1 min 86.63% 0.5793 0.5 min 57.30% 1.5471 17 min
500 91.34% 0.3576 1 min 91.43% 0.3877 1 min 79.54% 0.7848 40 min
1000 92.64% 0.2950 2 min 94.72% 0.2545 1.5 min 91.63% 0.3555 63 min
1500 94.49% 0.2314 4 min 95.95% 0.1855 2 min 91.93% 0.3055 66 min
2000 95.17% 0.1955 6 min 96.14% 0.1699 3 min 93.98% 0.3277 67 min
2500 95.46% 0.1968 7 min 96.26% 0.1784 5 min 94.02% 0.3204 76 min
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Fig. 4: Accuracy, loss and evaluation time of the DL models
(SDAE, CNN, LSTM) for CW100 and a growing number of
traces

and 3,000 cells from each trace), the achieved performance
still appears promising. Our interpretation is that even a small
part of the traffic trace is sufficient for website recognition up
to 94% accuracy when deploying a model that is able to exploit
temporal dependencies of the input sequence. Notably, LSTM
performs much poorer when trained on fewer traffic traces
than SDAE and CNN, but later gains comparable recognition
rate at 1000 training instances per class.

Next, we assess whether the selected DL models tuned on
CW100 perform similarly when applied to the larger datasets:
CW200, CW500 and CW900. The results of the DL-based

WF for all closed world datasets are presented in Table V,
expressed in classification accuracy, loss function and runtime.
The time reported in the table is the average time required
to build, train and evaluate a model. We observe that for
larger closed worlds the performance of the three DL models
gradually decreases following a similar trend. The closed
world evaluation results remain comparable to CUMUL’s
results presented in Table I in the previous subsection. Figure 5
compares the DL-based methods to CUMUL. This comparison
illustrates that our DL-based attack can indeed successfully
learn the fingerprinting features in an automated manner.
Furthermore, the training method itself is highly parallelizable
on GPU hardware resulting in a faster and therefore more
practical closed world WF attack.

The presented experiments on the closed world reflect the
model’s ability to classify traffic traces that are collected
at the same moment as the training data. Even though we
prove that such a WF attack is possible, we do not address
the question of eliciting the concrete data features that the
models take decisions upon. In other words, just based on
this experiment, we cannot certainly infer if the DNN reveals
the actual website fingerprint for deanonymization, or also
learns occasional dynamics in the traffic data instead that just
happens to enable recognition. The next experiment is intended
to reveal how well our DNNs are able to extract the fingerprint
and generalize to new data.

4) Concept drift evaluation: The challenge of recognizing
traffic traces collected over time was first addressed by Juarez
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TABLE V: Accuracy, loss and runtime of the DL models (SDAE, CNN, LSTM) for each closed world and 2,500 traces.

SDAE CNN LSTM
Dataset Accuracy Loss Runtime Accuracy Loss Runtime Accuracy Loss Runtime
CW100 95.46% 0.1968 7 min 96.66% 0.1699 5 min 94.02% 0.3204 76 min.
CW200 95.76% 0.1822 14 min 96.52% 0.1774 8 min 93.10% 0.3292 91 min
CW500 95.04% 0.2243 34 min 92.31% 0.3732 12 min 90.80% 0.3163 257 min
CW900 94.25% 0.2530 52 min 91.79% 0.4278 20 min 88.04% 0.3601 276 min
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Fig. 5: DL (SDAE, CNN, LSTM) vs. CUMUL for a growing
size of the closed world from 100 to 900 websites.

et al. [19]. They showed that classification accuracy drops
drastically when testing the model on traffic captured 10
days after training. This time effect is explained by constant
content changes of the websites, which of course may affect
the identifying fingerprints. Another possible reason for the
performance drop is that the classifier trained and evaluated
at one moment in time might overlook the stable fingerprint
and learn the temporary features instead. In general such an
occurrence is known as concept drift – a change over time
in the statistical properties of the class that the model is
trying to predict. Therefore, the recognition might become
less accurate over time. A model resilient against concept
drift is the one that manages to capture the salient traffic
features maximally correlated with the website fingerprint and
thus remains performant over time. To reveal if our DNNs
detect the actual website fingerprints and assess how well
they perform in case of traffic changes, we train the models
on a closed world and test them on data collected from
visiting websites of the same closed world periodically over
2 months. In order to fairly compare DL-based methods to
CUMUL, we have to evaluate them on the same dataset
with the same amount of traces. Due to CUMUL’s scalability
issue, the biggest dataset possible to use for this evaluation
is CW200 with 2,000 training instances. Even though this is
not the largest dataset we collected, it is still twice bigger
than the closed worlds normally used in prior works. Thus
we train models on the whole CW200 dataset (with 2,000
training traces) and test them on the revisit-over-time dataset
(as defined in Section IV).

The results are depicted in Figure 6 for DL and traditional
CUMUL. The plot indicates the WF performance of various
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Fig. 6: DL (SDAE, CNN, LSTM) vs. CUMUL resilience to
concept drift: evaluation of CW200 over time.

models trained on CW200 and evaluated on traffic re-collected
3 days, 10 days, 4 weeks, 6 weeks and 8 weeks after training.

The figure demonstrates how the classification accuracy
decreases and the classification loss increases gradually and
drastically over time. These results illustrate the high gen-
eralizing abilities of both the evaluated models. Despite a
significant 2-month time gap between the moment of training
and the last evaluation, the DL algorithms are still capable to
correctly deanonymize at least 66% out of 2,000 website visits.
We witness a rather small accuracy drop in the first 3 and 10
days for all three DL models, which may be acceptable for
an adversary who would prefer to use the built WF classifier
for several more days rather than repeat the data collection
and training process every day. In total, SDAE loses 22% of
accuracy over 2 months, CNN loses 29%, while LSTM only
loses 17%. Notably, being the most performant DL model
on the day of training, CNN generalized worse than SDAE
or LSTM. Despite the fact that the LSTM model (which still
makes decision just based on the first 150 cells in the input
sequence) is initially outperformed by both SDAE and CNN,
after one month its accuracy catches up with that of the SDAE.
Moreover, after 1 month the LSTM loss values are lower than
those of the SDAE, which means that even though the LSTM
outputs less correct predictions, it is overall more certain of
these predictions. This obviously speaks in favor of LSTM’s
high generalization abilities, in line with our best expectations.

Our SDAE and CNN approaches outperform CUMUL with
up to 7% over the course of 2 months. In total CUMUL
loses 31%. LSTM network starts outperforming CUMUL
after approximately 2 weeks. As such, this comparison not
only shows that our approach indeed automates the feature
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engineering, but also that the learned implicit features (hidden
in the neural network) are more robust against website changes
over time. Notably, CUMUL is found to significantly improve
its generalization abilities when trained on larger amounts
of traffic traces per website, which proves that DL-based
classifiers are not alone in their requirement for a bigger
training data for the highest performance.

The main conclusion here is that the DL-based classifiers
are capable of extracting stable identifying information from
the closed world traffic which allows for its deanonymization
with a high success rate, even several days after training.

5) Open world evaluation: This study compares DL-based
WF attacks and CUMUL for the open world evaluation. The
goal is to assess the classifier’s ability to distinguish a traffic
trace generated by a visit to one of the monitored websites
from a traffic trace generated by a visit to any other unknown
website. Our methodology for the open world evaluation
differs from prior work in several aspects. We aim to provide a
fair comparison of the classifiers by reducing possible bias. To
this purpose we have to depart from the realistic WF setting
and adapt the following assumptions:

• We model the monitored websites by training the clas-
sifier solely on the traffic traces of the websites an
adversary is aiming to detect. By doing so, we assess
the abilities of the learning algorithms to distinguish seen
and unseen websites. In previous studies on WF, it has
been argued that an adversary may improve the attack by
additionally collecting and training on traffic of known
websites that he is not interested in identifying, which is
of course a possibility given sufficient resources. But here
we do not provide any helping patterns of the open Web
to the classifiers to not distort their actual performance.

• We test the classifiers on balanced datasets: monitored
and unknown websites in proportion 50%-50% (meaning
that random classification would be accurate on average
50% of a time). Thus, we do not attempt to infer the
realistic ratio, especially knowing that modeling an open
world of a realistic scale poses large issues: (1) the
effect of the hypothesis space complexity, as shown by
Panchenko et al. [24], and (2) the base rate fallacy,
demonstrated by Juarez et al. [19]: even a highly accurate
classifier trained on the monitored websites with a very
low prior probabilities of visit cannot be fully confident
of its predictions. Instead we assume a standard uniform
probability distribution of visits to the monitored and
unknown sets. With such evaluation the classifier’s errors
are more prominent and allow for a clearer comparison.

• Following the earlier reasoning, we use Alexa web-
sites for both, monitored and unknown sets. Choosing
a particular set of monitored websites characterized by
patterns that are not common to the whole Web would
introduce classification bias with unpredictable impact on
comparison. In order to objectively compare the studied
classifiers, we demonstrate their abilities to distinguish
seen and unseen fingerprints belonging to the websites of
the same category (in our case, most popular websites).
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Fig. 7: DL (SDAE, CNN and LSTM) vs. CUMUL in the open
world setting for a monitored set of CW200.

We evaluate the open world WF attack for an adversary who
monitors a set of 200 websites, while the target user may
visit 400,000 more unknown websites. As a result, our open
world dataset consists of 800,000 visits through Tor: one-time
visits to 400,000 various websites in the Web and 400,000
visits to the monitored CW200. We train the models solely
on 2,000 instances of CW200 (thus obtaining the classifiers
identical to those used for the closed world evaluation).
Recall that earlier in the closed world evaluation section we
already assessed their multinomial classification performance;
the reported success rates indicate the ability of the classifiers
to identify the exact visited monitored website. In this section
we perform binary classification by testing the same models
on our open world dataset. With this experiment we assess
the classifiers’ ability to recognize the input instance as a
visit to a monitored or an unknown, earlier unseen website.
The classifier makes decisions based on the cross-entropy loss
function, which reflects its confidence in made predictions
(Appendix elaborates on the cross-entropy as a measure of
classification confidence). If the loss value is low enough, the
adversary assumes that the classified website visit belongs to
a set of monitored websites. If the entropy is bigger than
a certain confidence threshold, the adversary decides to not
trust the classifier’s class prediction and concludes that the
tested traffic trace was generated by an unknown website, thus
causing the prediction uncertainty. By varying the confidence
threshold, the adversary balances the True Positive and False
Positive Rate according to their priorities.

In our evaluation, we plot the ROC curve for the three DL
classifiers in order to define the optimal confidence threshold
which separates the monitored websites traffic from unknown
websites traffic. Both CNN and SDAE again outperform
CUMUL, if only slightly, as demonstrated by Area Under
Curve values in the same figure. The ROC curves for SDAE,
CNN and LSTM are depicted in Figure 7 and demonstrate
the relative performance of the suggested open world WF DL-
based attacks within 200 monitored and 400,000 unknown
websites. We observe that the CNN model performs better than
SDAE, and both perform significantly better than the LSTM
model. However, the adversary may improve the models by
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using the open world traces for validation during hyperparam-
eter tuning . LSTM classifier is outperformed by two other
DL models because it only processes the first 150 Tor cells,
opposed to 5,000 by SDAE and 3,000 by CNN.

According to the ROC curves, an adversary may optimize
the confidence threshold depending on their priority. For
200 classes, the categorical cross-entropy E varies between
0 (absolute confidence of the classifier’s prediction) to 5.3
(absolute uncertainty). The optimization examples are given
in Table VI, where reduced thresholds allow to decrease FPR.

TABLE VI: DL vs. CUMUL in the open world setting.

Optimized for TPR Optimized for FPR
Model E TPR FPR E TPR FPR
SDAE 0.005 80.25% 9.11% 0.001 71.30% 3.40%

CNN 0.033 80.11% 10.53% 0.013 70.94% 3.82%

LSTM 0.062 76.19% 19.78% 0.010 53.39% 3.67%

CUMUL 0.048 78.00% 9.89% 0.018 62.57% 3.58%

Our open world evaluation considers a large set of unknown
sites in which the adversary cannot train, allowing us to test
the generalization of our models in a large sample of the
Web. Similarly to the state-of-the-art, we observe how our DL-
based approach withstands a challenging open world scenario,
providing high accuracy on the largest set of unknown sites.

In the previous subsections, we have shown the relative
performance of various DL models in comparison with each
other and with the traditional CUMUL classifier. In certain
experimental settings we improved beyond the state-of-the-art,
e.g. in resilience to content changes and in success rate on the
largest closed world. The success rates of WF attacks proved
to depend on the closed world size, the amount of training
data available to the adversary and the computational resources
that can be used to train the classifier. For the evaluations
performed in this paper, we used the resources available at our
institution, but we acknowledge that a more powerful attacker
could most likely further improve the attack by using more
resources for data collection, model selection and training.

VI. DISCUSSION

In this section, we enumerate the limitations of this work
and discuss remaining open challenges with regard to both the
threat model and the deep learning methods we presented.

As in virtually all prior work on WF, we analyzed the
attacks only on visits to homepages and omitted other pages
within the considered websites. We acknowledge this is an
unrealistic assumption. However, as our main goal was to
perform a fair comparison with existing attacks, we used the
same experimental settings. As the models developed in prior
work were tailored to these particular settings, the evaluation
of techniques that consider inner web pages was deemed out
of scope for this paper. Nevertheless, we find automatic feature
learning a promising approach to this problem.

We do not try to approximate the probability of visiting
a closed world site vs. a site from the open world in our

experiments. We assume that all open world sites have the
same prior probability and all closed world sites have the
same prior probability. We acknowledge this does not reflect
reality but one can only hypothesize on the actual popularity
distribution of websites over Tor without risking the privacy
of Tor users. It is a limitation of our study and previous work.

Deep learning allows us to replace manual feature engineer-
ing with automatic feature learning. Therefore, the resulting
attack is not defined by an explicit set of features that would
be easily interpretable by a human analyst, but is instead
based on abstract implicit non-interpretable features, being
learnable parameters of the neural network. Moreover, these
features have proven to be more robust to web content changes
in comparison to those suggested in prior literature. Conse-
quentially, the corresponding countermeasure cannot focus on
concealing specific features as it was done earlier, but in order
to defend against the DL-based attack we have to challenge
the DL algorithm itself. Therefore, future work should focus
on defending against the automated WF attacks, such as deep
neural networks presented in this study.

One line of research for future work could be to investigate
whether it is possible to mislead the deep neural network
predictions. For instance, such research could base on the latest
work on adversarial examples [6]. These are inputs to the
learning model specifically crafted to fool the neural network
into classifying them into a wrong class. Adversarial examples
can be explored as a defense strategy against DL-based WF
in order to protect Tor user’s privacy.

In the very recent work by Wang and Goldberg [33], a
defense technique based on half-duplex communication and
burst molding is proposed. The authors claim that this defense
defeats all WF attack techniques known to date. It would be
interesting to validate whether the author’s claims still hold in
the presence of automatic feature learners such as DL.

VII. CONCLUSION

In this study, we propose a new website fingerprinting attack
based on deep learning. The main objective was to assess
the feasibility of WF through automated feature learning. We
show that deep neural networks are capable of fingerprinting
websites with an accuracy that is comparable to the best-
performing approaches among numerous research efforts in
recent years. The three DNNs we investigated have shown
their strengths and weaknesses in the context of WF:

• SDAE performed well overall and proved to be the most
stable DNN with respect to the closed world setting.

• CNN is the fastest network due to fewer learnable param-
eters, and performed best for smaller closed worlds and
for the open world evaluation. However, this DNN has
a higher risk of overfitting, which was revealed by the
larger closed worlds and the concept drift experiments.

• LSTM performed the slowest, but exhibited the best
generalization capabilities due to its recurrent structure.
However, its constraint in backpropagation did not allow
to process long traffic traces without jeopardizing the
overall performance.

12



In certain experimental settings, our attack even improves
existing implementations:

• SDAE showed better results than CUMUL on the largest
closed world we evaluated.

• All three DL approaches prove to be more robust against
web content changes than CUMUL, with LSTM being
twice more robust.

• SDAE and CNN networks perform slightly better in the
open world evaluation than CUMUL.

• The DL approach is generally more scalable due to
parallelization and automated model selection.

In conclusion, using DL gives an adversary major advantages,
resulting in accurate and efficient traffic deanonymization.
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APPENDIX

This section elaborates further on the DNN models and
learning algorithms we used in our WF attack.

A. Stacked Denoising Autoencoder

Autoencoder (AE) is a shallow feedforward neural network
designed for learning meaningful data representations [29]. It
is composed of an input layer, one hidden layer and an output
layer, as shown in Figure8a. The input layer acts as an encoder
that transforms data and passes it to the hidden layer h =
f(x), and the output layer of the same size acts as a decoder
that reconstructs the data back from the hidden layer r = g(h),
intending to produce maximally similar values.

(a) Autoencoder (b) SDAE from two autoencoders

Fig. 8: Stacked Denoising Autoencoder

The size of the hidden layer plays a crucial role in the
AE’s working algorithm: it defines the representation of the
input used for reconstructing the data. The hidden layer h is
constrained to have fewer neurons than the input x. Then such
an undercomplete AE is forced to compress the input and can
only output its approximation rather than the identity. In order
to reconstruct the data from a compressed representation with a
minimal loss, the network has to prioritize between properties
of the data during compression.

In case of a traffic trace as an input, AE will learn certain
combinations and transformations of the input values that
allow to reconstruct the same trace with the highest accuracy.
As a result, the hidden layer will contain the most salient
features of the traffic trace. The training is performed by
backpropagating the reconstruction errors expressed via the
loss function that has to be optimized by the network. The loss
function L(x, g(f(x))), such as mean squared error, reflects
the difference between the input x and its reconstruction
g(f(x)), and reaches its minimum value in case of a total
similarity between the two. We use a mean squared error for
this purpose, which measures the average of the squares of the
deviations: L(x, g(f(x))) = 1

N

∑N
i=1(g(f(xi))− xi)2, where

N is the number of neurons of the input (and the output) layer.
Since the undercomplete AE cannot learn a total identity

function but only an approximation, its training stops once
having minimized the loss function, and thus ensures a good

learned representation of data. The AE, as a building block of
our future classifier, has to learn representations which reflect
statistical properties of the whole data distribution beyond
the training examples. This is necessary to achieve a high
performance of the model on unseen data, a property of the
machine learning models known as a generalization capability.
The AE that performs during training much better than on
traffic unseen before, has overfitted to the training data, and
thus shows poor generalization capabilities.

To ensure generalization, we apply regularization by using
dropout, when a randomly chosen fraction of input values is set
to 0 at each training iteration. AE with dropout is a Denoising
Autoencoder (DAE) which is more robust to overfitting [26].

Stacked Denoising Autoencoder is a deep feedforward
neural network built from multiple DAEs by stacking them
together, in a manner depicted in Figure 8b. SDAE stacks the
DAEs representation layers: the hidden layer of the first DAE
is used as the input layer of the successive DAE, and so forth.
Chaining several DAEs enables the model to hierarchically
extract data from the input to learn features of different levels
of abstraction. We chain 3 DAEs to form a 5-layered SDAE.
Deeper models produce final features of higher abstraction,
which are meant to be used for classification on the concluding
layer. The classification layer has one neuron for each possible
class, or in our case for each website. Output neurons compute
the probability of the input instance to belong to a class. The
neuron that produced a maximum probability assigns its label
to the training instance.

It was discovered by Hinton et al.[15] that in order to
achieve a better performing DNN, it has to first be pre-
trained in an unsupervised fashion, that is without using the
knowledge of labels of the training data. This strategy is
known as the greedy layer-wise unsupervised pretraining that
initializes the SDAE. This stage is followed by a supervised
fine-tuning of the whole model, that learns to classify the
input by backpropagating the classification errors. The loss
function that expresses the errors is a categorical entropy
E = − 1

N

∑N
i (pilog2pi), where pi is a returned probability

for the predicted class with N websites in total. A classifier
confident of its decisions gives a high probability for each
predicted class which results into a minimized entropy.

B. Convolutional Neural Network

A deep network called Convolutional Neural Network
(CNN) is another feedforward network trained with backprop-
agation similarly to SDAE, but has a different structure, de-
signed for minimal preprocessing [21]. CNN’s main building
block is a convolutional layer, which performs a linear convo-
lution operation instead of a regular matrix multiplication. The
learnable parameters of the convolutional layers are kernels or
filters – multidimensional arrays that are convolved with the
input data to create feature maps, as depicted in Figure 9. The
kernel is applied spatially to small regions of the input, thus
enabling sparse connectivity and reducing the actual parameter
learning in comparison to fully-connected layers. The kernel
aims to learn an individual part of an underlying feature set,
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Fig. 9: Convolutional Neural Network.

e.g. the website fingerprint in a traffic trace. The convolution
function is followed by a non-linear activation, typically a
rectifier [23]. The rectified feature maps are stacked together
along the depth dimension to produce the output.

The next operation of the CNN is typically a pooling layer
that performs a subsampling operation by replacing the output
of the convolution layer with a summary statistics of the
nearby outputs. We use a max pooling layer that reports the
maximum outputs within regions of the feature maps. Pooling
helps the representation become invariant to minor changes of
the input. For instance, such subsampling allows to find the
prominent identifying parts of the website fingerprint within
the traffic trace, despite its slight shifts in location and ignoring
the surrounding traffic.

The network can include a whole series of convolution and
pooling layers in order to extract more abstract features. We
use two sets of such layers. The resulting feature maps need
to be flattened and concluded by at least one regular fully-
connected layer prior to classification. Because of the risk of
overfitting, we apply dropout and limit the amount of learnable
parameters of the network by using only two fully-connected
hidden layers. The final layer outputs the predictions.

C. Long Short Term Memory

Recurrent neural network (RNN) is a network with feedback
connections, which enable it to learn temporal dependen-
cies [17]. RNN can interpret the input as a sequence, taking
into account its temporal properties.

Long short term memory network (LSTM) [18] shown in
Figure 10a is a special type of a RNN that accommodates
so-called LSTM building block to model long-term memory,
which allows the network to learn longer input sequences.

The LSTM block processes sequences time step by time
step, passing the data through its memory cells, and input,
output and forget gates, as depicted in Figure 10b.

(a) LSTM (b) LSTM block

Fig. 10: Long Short Term Memory

The memory cell represents the so-called internal state of
the network. LSTM is able to remove or add information to the
cell, regulating these operations by gates. Gates are composed
of a sigmoid neural network layer and a pointwise product, and
are parameterized by a set of learnable weights. Gates learn to
carefully choose whether to let the information through them
in order to modify the internal state, to forget information or
to produce the output when deemed necessary. The output of
an LSTM block is formed by the number of memory units.

LSTM layer’s depth depends on the length of processed
sequences: due to the feedback connection, they basically
have one layer for every processed time step of a sequence.
Such structure can be obtained by unrolling the loop in
Figure 10a. Classification errors are backpropagated through
many layers ”through time”, which limits the training process:
first it significantly slows down training in compare to the
feedforward networks, and secondly, in practice it only allows
to backpropagate up to 100-200 layers.

LSTM layers can be stacked to form deeper networks. The
intuition is the same that higher LSTM layers can capture more
abstract concepts. We chain two hidden LSTM layers and form
a 4-layered LSTM network (with each layer ”unrolled” to as
many layers as there are time steps in the processed sequence),
which allowed to obtain the best performance.
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